

<u>Typology Approach</u> for <u>Building Stock Energy</u> <u>Assessment</u> www.building-typology.eu

D6.2: National Scientific Report - GREECE -

National Observatory of Athens – NOA Athens, Greece May 2012

Authors:

Dr. Elena Dascalaki Constantinos A. Balaras, PhD Popi Droutsa, MSc. Simon Kontoyannidis, MSc

Contents

1	Intro	duction	5
	1.1	Objectives of the TABULA project	5
	1.2	Status of introduction of energy performance certificates in Greec	e.6
	1.3	The TABULA project in Greece	7
2	The	TABULA typology for the Hellenic Residential Buildings	9
	2.1	Hellenic Building types	9
	2.2	"Building Element" sub-typology	.13
	2.3	"System" sub-typology	.14
3	Appl build	ication of the typology concept in the Hellenic residential ling sector	17
	3.1	The Hellenic Energy Performance method: TEE-KENAK	.17 17
	3.2	Assessment of the energy performance of buildings	.19
	3.3	TABULA vs Hellenic Calculation Method (TEE-KENAK)3.3.1Comparison with actual energy consumption	.22 24
4	Mod	eling the energy balance of the Hellenic building stock	29
	4.1	Building Typology Approach	.29
	4.2	Available Data	.29
	4.3	Energy Balance Method	.32
	4.4	Energy Balance of the Residential Building Stock4.4.1 Comparison to National Statistical Data of the Residential	.33
		4.4.2 Calculation of Energy Saving Potentials	34 36
	4.5	Conclusion	.39

5	Exte sect	nsion of the typology concept to the non-residential building or	. 40
	5.1	Existing typology concepts	40
	5.2	Draft classification scheme for non-residential buildings	43
	5.3	Proposed proceeding / link with current national activities	46
	5.4	Conclusions	47
6	The	Hellenic TABULA Brochures	. 48
7	eKIA	: A web application based on the Hellenic typology concept	. 52
RE	FERE	NCES	. 55
RE AP	FERE PEND	NCES	. 55 . 57
RE AP	FERE PEND Appe	NCES ICES endix I: Statistical tables (Frequencies)	. 55 . 57 58
RE AP	FERE PEND Appe Appe	NCES ICES endix I: Statistical tables (Frequencies) endix II: Weighting factors	. 55 . 57 58 66
AP	FERE PEND Appe Appe (ene	NCES ICES endix I: Statistical tables (Frequencies) endix II: Weighting factors rgy balance model)	. 55 . 57 58 66 66

1.1 Objectives of the TABULA project

The TABULA project focused on the creation and applicability of European building typologies with emphasis on the residential sector. The overall objective of the project was to enable an understanding of the structure and modernisation processes of the building sector in different European countries and share experiences on successful energy saving strategies.

The term "building typology" in TABULA describes a classification of buildings according to some specific characteristics which are related to the building energy performance. The energy consumption in buildings depends on a number of factors among which the envelope construction, age distribution of the existing building stock, outdoor weather conditions, size of buildings, type, age and efficiency of equipment. The year of building construction provides useful insight information with regard to the type of envelope construction, in accordance to the national building standards in force at that time. In particular, this is related to the use of thermal insulation and materials used for the building envelope or even the type of electromechanical installations.

In order to overcome the restrictions in the generalisation of the typology concept imposed by the diversity of construction trends in the various European countries, a harmonised structure was set up and used for the creation of the national typologies. facilitating a cross country comparison of building stocks. Based on the TABULA harmonised structure, a total of 13 national building typologies were created, each representing the corresponding residential building stock. Each national typology consists of different building types with energy related characteristics that are representative of the corresponding country, classified on the basis of two critical parameters, i.e. age and size. This classification results in a group of building categories ("classes") corresponding to distinct, nationally defined construction periods and up to four general building sizes in the national residential building stock, namely: single family house, terraced house, multi-family house and apartment block. The building size categories were carefully selected to cover the diversity of building structures in the participating countries in a representative, yet not too detailed manner. Each national typology is supplemented by two sub-typologies describing the most common building construction types and system installations in the participating countries, namely, the "building elements" and the "systems" subtypology. The first one includes descriptions of building construction types (walls, roofs, floors, windows) and their respective heat loss coefficients before and after refurbishment (U-values for opaque and transparent elements) and g-values for glazing. The second one includes descriptions of heat generation, storage and distribution system types for space heating and domestic hot water (DHW) production along with the respective expenditure coefficients for the generation systems and the average heat loss for the distribution systems. Additional information about the frequencies of building element and system types in the residential building stock make it possible to use the typology as a model for estimating the share of the residential building sector in the national energy balance and assess the saving potential of partial or general application of well targeted energy conservation strategies.

TABULA project focuses on the energy consumption for space heating and hot water production, which constitute the main energy consuming end-uses in the residential sector. The harmonized structure supports energy performance calculations for the typical buildings, including heating energy demand, primary energy and CO₂ emissions as well as energy consumption per energy carrier. The energy demand for space heating is calculated by applying the seasonal method according to EN ISO 13790 on the basis of a one-zone model. The external boundary conditions (air temperature, external temperature / solar radiation) are defined on a national basis for a standard base temperature. In case of significant climatic differences between regions of a country several climate datasets are provided. Standard values are used for the utilisation conditions (room temperature, air exchange rate, internal heat sources) as well as for the solar radiation reduction factors (shading).

The structure and features of a national building typology can be displayed in two ways:

- "Building Matrix" providing an overview of all building types according to the classification.
- "Single Building Overview" for each building type providing information on the thermal properties of the envelope and the installed heating system along with an assessment of energy savings from the application of suitable ECMs.

The main result of the project is a webtool designed to offer experts from all European countries the possibility to use the TABULA data to make an assessment of national building stocks, perform cross-country comparisons or even scenario calculations for energy saving policies, programmes or projects. It will also serve as a demonstration tool providing on-line calculations for each typical building to show the possible energy savings achieved by standard and ambitious refurbishment scenarios.

1.2 Status of introduction of energy performance certificates in Greece

EPBD transposition was enacted in Greece by the national law N.3661/2008 on "Measures for the reduction of energy consumption in buildings and other provisions" that was published in May 2008 (FEK 89/A 19.5.2008). The law is basically a translation of EPBD, providing the general framework, with all major provisions mandated by the directive. Two years later, the "Regulation on Energy Performance in the Building Sector – KENAK" was issued by the Ministry of Environment, Energy and Climatic Change (YPEKA) by a Ministerial Decision MD6/B/5825 (FEK 407/B/9.4.2010). KENAK outlines the general calculation method in compliance with the European standards and EN ISO 13790 (2008) and overall approach towards issuing an energy performance certificate (EPC). It is supplemented by four technical guidelines (TOTEE 20701-4/2010) that were developed by the Technical Chamber of Greece (TEE) and approved by YPEKA (MD 17178 FEK 1387/B/2.9.2010).

Transposition of the European Directive 2006/32/EC took effect in June 2010 by the national law N.3855/2010 (FEK 95/A 23.6.2010), introducing various energy efficiency improvement measures, energy service companies (ESCOs) and third party financing (TPF) arrangements, in order to achieve by 2016 an overall national indicative target of 9% energy conservation.

Several revisions have been integrated in satellite legislative efforts and are directly related to the contents of N.3661/2008. The national law on RES (N.3851/2010)

extends the obligation to perform an energy design study to all new buildings, regardless of their size, and allows audits in individual units (properties) of a building (e.g. an apartment). The national law N.3889/2010 on the Green Fund (FEK 182/A/14.10.2010) mandates that residences with an annual use of less than four months (e.g. summer residences) should also comply with N.3661/2008.

Since October 2010, all new buildings must be at least class-B to obtain a building permit. Existing buildings that undergo major renovation ought to rate B or as close to B as possible given the restrictions imposed by technical, operational and economical factors that need to be clearly documented and well substantiated in the energy study that precedes the building retrofit action. An EPC is issued upon completion of the building that has been designed and constructed according to KENAK. Accordingly, all new buildings that have been constructed or renovated as of the end-2010 in Greece will be visited by an energy inspector and audited after their construction, in order to issue an EPC, assuring that they are at least class-B. As of January 2011, the EPC is compulsory for all buildings that are being sold. The requirement for an EPC for an entire building as well as for a building unit (e.g. an apartment) that is being rented out for the first time to a new tenant was enforced in January 2012. As of May 2012, the number of EPCs issued exceeds 120,000.

1.3 The TABULA project in Greece

The aim of the TABULA project in Greece was to elaborate and improve the existing knowledge on the Hellenic building stock, providing a powerful means for the assessment of the energy performance of individual buildings, groups of buildings and even for the evaluation of the impact of energy conservation scenarios on the entire residential building stock. Accordingly, the main objectives of the Hellenic TABULA project were to:

- Contribute to the development of and provide input for the TABULA harmonized structure
- Create the Hellenic residential building typology in line with the TABULA harmonised structure and feed it with up-to-date input data on buildings, structures and electromechanical (E/M) systems
- Use the typology for the assessment of the energy performance of residential buildings and for the evaluation of the impact of energy conservation measures (ECMs)
- Use the typology concept to create a model for the estimation of the national energy balance of the Hellenic residential building stock
- Investigate the possibility of extending the typology concept to non-residential buildings.

The work and outcome of the TABULA project is addressed to:

• architects, engineers and consultants

Energy advisors can use it in counselling sessions to give their clients a quick overview of the energy performance of a building similar to their own and demonstrate the effect of possible measures. Energy consultants may use it as a set of example buildings for demonstrating and testing their software.

• building owners / building's technical and maintenance staff

House owners may use it on their own to assess the energy performance of their buildings as well as the cost effectiveness of measures to improve it.

• national and international energy and policy experts On a national level, the building typology can be used as a model for imaging the energy consumption of the residential building stock.

2 The TABULA typology for the Hellenic Residential Buildings

2.1 Hellenic Building types

The first Hellenic Building Thermal Insulation Regulation (HBTIR) (OHJ 362/4-7-79) took effect in 1980 setting the minimum requirements for thermal conductivity of the building envelope for different climatic zones. Buildings constructed before 1980 (pre-1980) correspond to 75% of the total building stock. During the first decade of the HBTIR implementation (1980s), the majority of buildings were not properly insulated and only recently new buildings have thermal insulation on the load bearing structure. Consequently, the great majority of the Hellenic building stock is not thermally insulated, despite the fact that the heating degree days (HDDs) in the northern parts of the country range over 2600 HDD due to the severe cold and rainy weather conditions affecting Greece during the cold period of the year between late October and early April [1]. As discussed in section 1.2, EPBD transposition was enacted by the national law N.3661/2008 that was published in May 2008 and HBTIR was replaced by the new "Regulation on the Energy Assessment of Buildings - KENAK" in April 2010. KENAK outlines the general calculation approach in accordance to European standards, the use of a reference building for benchmarking, the requirements for EPCs based on an asset rating accounting for heating, cooling, ventilation, sanitary hot water and lighting, the minimum energy performance requirements and thermal envelope heat loss constraints.

According to the records of the Hellenic National Statistical Service, residential buildings account for about 75% of the total building stock. The great majority of buildings have been constructed before 1980 and, therefore, they are either not thermally insulated or poorly insulated; over 60% of exterior walls and 80% of windows of the existing building stock do not meet current minimum code requirements [2]. Based on 1996 data [1], there has been some limited improvement, with 12% of households having cavity-wall insulation and 8% are double-glazed.

The harmonised structure developed within the TABULA project was used in order to derive a typology for the Hellenic residential building sector. The classification of buildings was based on three main parameters: the building age, size and climatic zone. According to the year of building construction three categories were defined:

- Buildings constructed before 1980 (pre-1980), which is considered the border line for buildings without thermal insulation since they were constructed before the implementation of the national thermal insulation regulation.
- Buildings constructed during the period 1981–2000, which are considered to be partially or fully insulated. Despite the introduction of the HBTIR since 1980, the integration of thermal insulation was problematic during the first decade of its implementation. For example, only recently the new buildings have thermal insulation on the load bearing structure to eliminate thermal bridges. Ordinary double glazing is also common practice in all new buildings and the most frequent refurbishment activity in existing buildings.
- Buildings constructed after the year 2000.

As mentioned above, the harmonized TABULA structure allows for input in four size related building categories. According to the building size, two more categories were

defined: single family houses-SFH (low-rise buildings with one or two floors) and multifamily houses-MFH.

The climate plays an important role in typical building the construction techniques of a region. Climatic variability in Greece affects the regional construction trends regarding the energy performance of buildings. The energy-related characteristics of buildinas differ according to the prevailing conditions in their geographic location, which has a significant impact on the relative effectiveness of ECMs.

The new regulation on the energy performance assessment of buildings (KENAK), defines four climatic zones on the basis of the heating degree

days, namely: Zone A (601–1100 HDD), Zone B (1101–1600 HDD), Zone C (1601–2200 HDD) and Zone D (2201–2620 HDD).

Table 2.1 summarizes the different classification parameters that were used for the creation of the Hellenic residential building typology. The Hellenic typology consists of **24 building classes**, resulting from the combination of the classification parameters (2 sizes X 3 construction periods X 4 climatic zones). Each class was assigned an **example building**, carefully selected to be representative of all buildings that belong to the particular class.

Table 2.1: Classification parameters

Size	2 sizes	Single Family Houses (*) – Multi Family Houses						
Year of construction	3 periods	1: pre 1980						
	-	2: 1980-2000						
		3: 2001-2010						
Climatic zone	4 climatic zones	A, B, C, D (according to KENAK)						

(*) low rise, one or two floors

The available information for the 24 example buildings along with all relevant data were incorporated in the TABULA matrix, as the national database.

112		A Code_Building	H Description_Building_National	i Name_Photo_Building	Photo_Building	Remark_Building_1	Remark_Building_2	Remark_Building_3	Remark_Building_4	Oate_Entry	P Date_Change	Note_DataBaseAdmin	Year1_8 uilding	Year2_8 uilding	Year2_B uilding_E	Code_Uti lisationT	A_C_Nat /	N_C_
															xtansion	Abe		
	Ϊ	dentification of the building dataset.	national description	file name of the photo	range for displaying the building photo	internal remark	internal remark	internal remark	internal remark	date of entry into database	date of last change	note or advice by database administration	construction year of the	construction year of the	last year of the extended	code of the utilization	conditione o d national o reference	ordei gross foor at
	2	🗸 Assistant											building (or First vear	building (or last vear	a period	type	foor area	
	ľ	Clear up formats and formulas 13 use forces revisions to construct tensor formula. 29 Reasons which can up a 20 Reasons which can up a 20 Acts a surface of multi setembrists for revision.		required picture file names: "(Code_BuildingType).JPG") picture file tites resonvended 50kB, max. 100 kB per picture: all pictures should be provide in a separate ZIP-file	4	e.g. data source	e.g. status of data preparation, open points	further comments 1	further comments 2			implemented / necessary / recommended changes			only used for entended constructio n year classes in	indicator for utilisation conditions	determine a determine a decording r to national	Inditia Noor alcular alcular basis o
	1			Insert Picture	in control										case of average		performan p	Imen
	Ì			(example: "Mativize" for the Please, select the relevant range bell	trish pictures). the pressing the button.											Tab.Const Utilization		
÷.	6	VerCher		VarChiar		Test				Date			Entreger	Integer	Integer			
	148	GR.Zonell.HFH.01.Gen.ReEx.001	Προγματικό κτίριο	GR.ZoneB.MPH.01.GEN.ReEx.001.jpg		five-etoney residential building in Athens				2000-09-0			0	1960	0	Apartment	1680.0	16
		GR.ZoneA.MFH.01.Gen.ReEx.001	Προγματικό κτίριο	GR.ZonaA.MFH.01.GEN.RaEx.001.300		three-storey residential building in Heraklion				2000-09-0	,		0	2960	0	Apartment	1115-0	11
	140	GR.ZoneC.MFH.01.Gen.ReEx.001	Προγματικό κτίριο	GR.ZoneC.MPH.05.GEN AvEx.005 (pg	No. of Concession, Name	Six-storey residential building in Larisa				2000-09-0	,		0	2960	0	Apartment	1111.0	11
	150	GR.Zone0.HFH.01.Gen.ReEx.001	Проузетно ктірю	GR.ZoneD.MFH.61.GEN.ReEx.001.3rg	N. 8	three storey residential holding in Kinzeri				2010-09-0	,		0	1960	0	Apartment	\$76.0	
	151				-11 X	senary in neuron												
	152	URL DIRECTIFIC DE DIRECTOR	Проурстий ктіре	GR.ZoneD.MFH.62.GEN AuEx.001.3rg		three-storey residential building in Kazani							1981	2000	0		966.0	•
		GR.ZoneA.SFH.01.Gen.ReEx.001	Проуретно ктірю	GR.ZoneA.SPH.01.GEN ReEv.001.jpg		two-storey house in Synta				2000-09-0	,		0	1960	0	SingleFam By	172.0	d,
		GR.ZoneA.MFH.02.Gen.ReEx.001	Проузетно ктірю	OR.ZoneA.MPH.02.GEN AvEx.005.300		stuetorey residential building in Kahayana				2010-09-0	,		1961	2000	0	Apartment	1377.0	IJ
	154	GR.ZoneA.SFH.02.Gen.ReEx.001	Проузетно ктірю	GR.ZoneA.SFH.02.GEN ReEv.001.gg	(Acids	one-storey house in				2010-09-0	,		1981	2000	0	SingleFam Py	122.0	
	155	GR.ZoneB.SFH.01.Gen.ReEx.001	Проузатий ктірю	GR.ZoneB.SFH.01.GEN.ReEx.001.jpg	Carlos and	two-storey house in				2000-09-0	,		0	1960	0	SingleFam by	254.0	,
	156	GR.Zonell.SFH.03.Gen.Relix.001			NOR OTHER					2000-09-0	,					SingleFam		
	157		Проууетий ктірю	GR.ZoneB.SFH.03.GEN.ReEx.001.jpg		one-stoney house in Volos							2005	9999	0	ev.	290.0	1
	158	GR.ZoneB.MFH.03.Gen.ReEx.001	Проурстий ктірю	GR.Zonell.MPH.03.GEN.ReEx.001.jpg		stuttorey meldential building in Kalsarlani				2000-09-0	,		2005	9999	0	Apartment	760.0	,
	-	GR.ZoneC.SFH.02.Gen.ReEx.001			(WTG)					2000-09-0	7					SingleFam		v
14 4		Info / Log.Changes / Tab. TypologyRegio	n / Tab.ConstrYearCl	ass / Tab.AdditionalPar / 1	Fab.Building.Constr	Tab.Building.Mea	sure Tab. Type.	Building Tab.Build	ling Compatibility	y Report 📝 🔧		0 4	11					•

The thermal characteristics of the envelope, as well as the performance coefficients of the heating systems installed in the example buildings of the Hellenic typology, are summarized in Table 2.2 together with the corresponding minimum requirements imposed by the national regulation (KENAK).

Supplementary sub-typologies regarding building elements and systems were prepared in accordance to the construction and system installation trends in the Hellenic residential building sector throughout the three age classes.

SIZE	ZONE/	HEAT 1	RANSFER (COEFFICIENTS O	F BUILDING	ELEMENTS	(W/m²K)	PERFC	RMANCE COEF	FICIENTS OF HI ATIONS (-)	EATING
CLASS	AGE		Lood		FI	oor		Space I	leating	D	HW
		Walls	Bearing	Roof	On ground	Pilotis	Windows	Generation	Distribution	Generation	Distribution
	A/1	0.95	3.40	3.10	2.00		3.10	0.80	0.86	1.00	1.00
	A/2	0.85	3.40	3.10		2.75	6.10	0.72	0.86	1.00	1.00
	A/3	0.59	0.67	0.70	3.10		4.10	0.84	0.94	0.80	0.98
	B/1	2.20	3.40	3.70	0.95		4.70	0.72	0.86	1.00	1.00
	B/2	0.60	3.40	0.70	3.70		4.10	0.80	0.94	0.80	0.98
QEU	B/3	0.61	0.67	0.63		0.63	3.50	0.84	0.92	1.00	1.00
SFIT	C/1	2.20	3.40	0.63	3.10		4.10	0.75	0.86	1.00	1.00
	C/2	0.64	0.67	0.63 / 0.69		0.63	3.60	0.84	0.89	1.00	1.00
	C/3	0.59	0.67	0.69	3.10		3.20	0.84	0.94	1.00	1.00
	D/1	2.2 /0.59	3.40	0.78		2.75	6.00	0.90	1.00	1.00	1.00
	D/2	0.59	3.40	0.63		0.63	4.10	0.84	0.89	1.00	1.00
	D/3	0.59	0.67	0.69	0.65		3.70	0.84	0.94	1.00	1.00
	A/1	2.20	3.40	3.10	3.10		4.70	0.80	0.93	1.00	1.00
	A/2	2.51	3.40	3.10	3.10		6.10	0.72	0.88	1.00	1.00
	A/3	0.59	0.67	0.63		0.90	4.10	0.84	0.95	1.00	1.00
	B/1	2.20	3.40	3.10	3.60		5.00	0.72	0.88	1.00	1.00
	B/2	2.20	3.40	3.10		2.75	6.10	0.80	0.88	1.00	1.00
МЕШ	B/3	0.64	0.67	0.63		0.63	3.20	0.84	0.94	1.00	1.00
	C/1	2.20	3.40	3.10	3.10		5.00	0.71	0.90	1.00	1.00
	C/2	2.51	3.40	3.10		2.75	6.00	0.84	0.89	1.00	1.00
	C/3	0.59	0.67	0.63		0.63	4.10	0.84	0.94	1.00	1.00
	D/1	2.20	3.40	3.10	3.10		3.20	0.95	0.86	1.00	1.00
	D/2	2.20	3.40	3.10	2.00		4.10	0.95	0.86	1.00	1.00
	D/3	0.59	0.67	0.63		0.63	3.20	0.84	0.94	1.00	1.00
				MINIMU	IM REQUIRE	MENTS BY N	ATIONAL RE	GULATION (KEN	AK)		
осы	A	0.60	0.60	0.50	1.20	0.50	3.20				0.07.0.02
	В	0.50	0.50	0.45	0.90	0.45	3.00	0.02.0.04	0.02.0.00	0.92-0.94	0.07-0.93
	С	0.45	0.45	0.40	0.75	0.40	2.80	0.92-0.94	0.92-0.96	(boiler)	distribution)
	D	0.40	0.40	0.35	0.70	0.35	2.60				

 Table 2.2: Energy related characteristics of the envelope and installed systems of the buildings used as real examples for the 24 classes of the

 Hellenic residential building typology.

2.2 "Building Element" sub-typology

The Hellenic "building element" sub-typology consists of **107 types** of roof, floor, wall and window elements reflecting the most common construction types in the residential building stock. For each element type, the thermal transmission coefficient (U-value) is specified along with the corresponding period of application to the residential building sector. The U-values of the opaque elements are specified for three levels of thermal insulation (no insulation, partial and full) in accordance to the national technical guideline (TOTEE-20701-1/2010). Tables 2.3 and 2.4 summarize the contents of the building element sub-typology.

WALLS	None	3 cm	5 cm
Brickwork 10cm - Unplastered on one or both sides	3.25	0.95	0.65
Brickwork 10cm - Plastered on both sides	3.05	0.95	0.64
Brickwork 10cm - With brick finishing	2.50	0.85	0.61
Brickwork 10cm - With stone finishing	2.80	0.90	0.63
Double Brickwork 10cm - Unplastered on one or both sides	2.30	0.85	0.60
Double Brickwork 10cm - Plastered on both sides	2.20	0.85	0.59
Double Brickwork 10cm - With brick finishing	1.90	0.80	0.57
Double Brickwork 10cm - With stone finishing	2.10	0.80	0.59
Double Brickwork 10cm with slightly ventilated air layer	2.51	0.85	0.61
Brickwork 20cm - Unplastered on one or both sides	2.30	0.85	0.60
Brickwork 20cm - Plastered on both sides	2.20	0.85	0.59
Brickwork 20cm - With brick finishing	1.90	0.80	0.57
Brickwork 20cm - With stone finishing	2.10	0.80	0.59
Stone wall 30cm - Unplastered on one or both sides	4.25	1.05	0.68
Stone wall 30cm - Plastered on both sides	3.85	1.00	0.67
Stone wall 30cm - With brick finishing	2.85	0.90	0.63
LOAD BEARING STRUCTURE	None	3 cm	5 cm
Reinforced concrete - Unplastered on one or both sides	3.65	1.00	0.67
Reinforced concrete - Plastered on both sides	3.40	1.00	0.66
Reinforced concrete - With brick finishing	2.45	0.90	0.61
Reinforced concrete - With stone finishing	2.90	0.90	0.64
ROOFS	None	3 cm	7 cm
Conventional flat roof	3.05	0.95	0.50
Flat roof under not insulated pitched roof	3.70	1.00	0.50
Tilted reinforced concrete slab with ceramic tiles	4.70	1.05	0.50
Wooden beams with ceramic tiles	4.25	1.00	0.50
Green roof	1.20	0.70	0.49
FLOORS	None	3 cm	5 cm
Pilotis	2.75	0.90	0.63
Slab on grade	3.10	0.95	0.65
Slab over unheated space	2.00	0.80	0.58

Table 2.3: Building element sub-typology – opaque element types. U-values (W/m^2K) for three levels of insulation degree.

Table 2.4: Building element	sub-typology –	transparent	element	types.	U-values
(W/m²K) and g-values (-)					

WINDOWS	U_value	g_value
Single glazed, metal frame	6.1	0.58

Single glazed, wooden or synthetic frame	4.7	0.58
Double window, wooden frame	2.3	0.51
Double glazed (6mm), metal frame	4.5	0.51
Double glazed (6mm), metal frame, thermal break 12mm	3.5	0.51
Double glazed (6mm), metal frame, thermal break 24mm	3.3	0.51
Double glazed (6mm), synthetic frame	3.3	0.51
Double glazed (6mm), wooden frame	3.1	0.51
Double glazed (12mm), metal frame	4.1	0.51
Double glazed (12mm), metal frame, thermal break 12mm	3.2	0.51
Double glazed (12mm), metal frame, thermal break 24mm	3.0	0.51
Double glazed (12mm), synthetic frame	2.9	0.51
Double glazed (12mm), wooden frame	2.8	0.51
Double glazed (6mm) low -e, metal frame	4.0	0.45
Double glazed (6mm) low -e, metal frame, thermal break 12mm	3.1	0.45
Double glazed (6mm) low -e, metal frame, thermal break 24mm	2.9	0.45
Double glazed (6mm) low -e, synthetic frame	2.9	0.45
Double glazed (6mm) low -e, wooden frame	2.6	0.45
Double glazed (12mm) low -e, metal frame	3.5	0.45
Double glazed (12mm) low -e, metal frame, thermal break 12mm	2.7	0.45
Double glazed (12mm) low -e, metal frame, thermal break 24mm	2.4	0.45
Double glazed (12mm) low -e, synthetic frame	2.3	0.45
Double glazed (12mm) low -e, wooden frame	2.1	0.45

The available information for the 107 building elements was processed and the corresponding data along with the supporting pictures were incorporated in the TABULA matrix, as the national database.

12		A	1	ĸ		M	N	0	P	0	R	s	
		Code_Construction	Description_Construction	Description_Construction_Nationa	Remark_Construction	Name_Picture_Construction	Picture_Constru	Year1_Construct	Year2_Construct	d_Insulation	U	a_al_n	Date_t
				1			ction	ion	ion				
	λ.	dataset identification	detailed description	detailed description, pational language	internal camark	fie name of the nichure	ranne for declarates	features of period	last year of period	thickness of	Donke	musiker total colar	date of a
	- 1		Concentration of the second systems	or and or a poor, made a language		the marke of the picture	the picture of the	(for the first	(for the latest	existing insulation	C-Table	energy	databasa
		A Haspitalit					construction	construction year	construction year			transmittance for	
	.							dass enter the	class enter the			radiation	
	-					recommended picture format: WME:		not necessarily	natioe 2000)	relevant in case of		peperacuar to	
		Clear up formats and formulas				recommended range of picture file size:		identical with	identical with	replacement by			
		 Dees first data raw as template for dataset formats and formulas. Deess rave without data input. 				50 to 400 kB; all pictures should be		construction year	construction year	new measure			
		(3) Aldb a number of amply delated rove for new input.				provided in one seperate ZIP-Ne (per country)		dass	Class				
	41										W/(mRC)		
						from subfolder "Picture \Constr\{	Code Country)*						
· •	5					VarThar							Cala
	× 1	GR.Wall.ReEx.01.20				1000	100000	11110200	2-10.20		100.08		1000
				animana Ing a kawabila ing Kawa									
			plaster 2cm - stone 10cm - brick 2cm	διακισομητικό τούβλο 2cm		W3-3-deco.gpg	Parent	•	9999	0.00	2.85		
	80												
		GR.Wall.Refx.02.01					UT 22 F11						
			plaster 2m - Reinforced concrete	επίχρισμο 2σπ - Οπλισμένο σκυρόδεμο			1						
			(thickness less than 80 cm) - insulation	(nάχος < 80cm) - μόνωση 3cm -		\$2-2.3pg		1985	9999	0.03	1		
	561		John - presser 20m	engpiepo aon			1 11 1						
		GR.Wall.ReEx.02.02					1. 11						
			plaster 2m - reinforced concrete	επίχρισμο 2cm -Οπλισμένο σκαρόδεμο		60. L H H	11/1						
			(exciteta less than bu chi) - inscasion	(nöχος < 80cm)- μόνωση 3cm		97.1308	×1/ ,	1402	~~~	0.03			
	962						11						
		GR.Wall.Refx.02.03					100 11						
			plaster 2cm - reinforced concrete -	enigorado 2011 - Onlvadevo akupóčeja Valuare z Ricardo valuaren 2011 -		\$2.3 km		1005	0000	0.02			
			insulation 3cm - brick 2 cm	διακοσμητικό τούβλο 2cm			12 1/1	1902			0.9		
	563												
		GR.Wall.Refx.02.04		and a second									
			plaster 2cm - reinforced concrete -	(nbyoc < 80cm)- ubyum 3cm -		\$2-4.ipp		1990	0000	0.03	0.9		
			insulation 3cm - stone 2 cm	διακοσμητική πέτρα 2cm									
	564												
		GR.WallRetx02.05					1 200						
			plaster 2cm - brick 20cm - insulation 3cm	ετήχκομο 2οη -Μτατική οπτοτλιγθοδομή		W1-4-insul1.jpg	1) Here	0	9999	0.03	0.85		
				soon - hoveral pour			1 20 20						
	565						11.309809						
		UR WORKCELVENU					1000						
			plaster 2m - brick 20m - insulation 3m	επίχουμα 2απ -Μπατική οπτοπλιγθοδομή		W1-4.pg	1 1 1	0	9999	0.03	0.85		
			pasto anii	zone, howen't one - pathogha sou									
	200	CD Wall Party 03.07					120200-13						
		UR HUR CLAULOF		crimento Jon Marmel Attache Balach			1000						¥
14 4	r H	Tab.BoundaryCond Tab.Building.Constr	Tab.Building.Measure Tab.Syste	m.HG / Tab.System.HS / Tab.Sy	stem.HD / Tab.System.HA / Tab.System.WG / T	ab.System.WS / Tab.System.WD	_ Tab.System.WA	14					•

2.3 "System" sub-typology

The Hellenic system sub-typology consists of generation and distribution systems as well as auxiliary systems for space and DHW heating. Expenditure coefficients are specified for a total of **67 heat generation systems for space heating** and **50 for DHW production**. The heat generation systems include boilers (condensing/non condensing, constant/low temperature), heat pumps, electric heaters, stoves, district heating and cogeneration systems. Boilers are differentiated according to the type of fuel (oil/natural gas), maintenance level and insulation degree. Heat losses (kWh/m²

reference area) are specified for **32 space heating** and **25 DHW heat distribution systems**. Typical values of auxiliary energy demand are supplied for the heating systems. For each of the above system the period of application to the residential building sector is also specified. Table 2.5 summarizes the average expenditure coefficients of the heat production systems of the system sub-typology. The tabulated average values are the result of grouping the systems in categories and using weighting factors to express the frequency of occurrence of each system in the three age bands. The weighting factors are best estimates derived in collaboration with experts participating in the National Advisory Group.

SPACE HEATING	pre 1980	1981-2000	2001-2010
Oil boiler, well maintained	0.79	0.83	0.86
Oil Boiler, poorly maintained	0.70	0.76	0.81
Natural gas boiler, well maintained		0.86	0.87
Natural gas boiler, poorly maintained		0.81	0.80
Stoves_gas/oil fuel	0.80	0.80	0.80
Open fire	0.20	0.20	0.35
District heating		0.88	0.88
Heat pumps	1.70	1.95	4.00
Electrical space heaters	0.98	0.98	0.98
DHW HEATING	pre 1980	1981-2000	2001-2010
Oil boiler, well maintained	0.83	0.82	0.86
Oil Boiler, poorly maintained/poorly insulated	0.66	0.76	0.79
Oil boiler, well maintained + electric immersion resistance	0.83	0.82	0.86
Oil boiler, poorly maintained + electric immersion resistance	0.66	0.76	0.79
Natural gas boiler, well maintained		0.86	0.87
Natural gas boiler, poorly maintained/poorly insulated		0.77	0.80
Instantaneous water heaters	0.95	0.98	0.98
Instantaneous water heaters fired by gas		0.80	0.83
Electric water heaters	0.95	0.97	0.97

Table 2.5: "System" sub-typology: average expenditure coefficients per age band for space and DHW heating systems (based on High Calorific Value)

Similarly, the average heat losses of the distribution system per age band are summarized in Table 2.6.

Table 2.6: "System" sub-typology: average heat losses per age band (kWh / m^2 reference area)

DISTRIBUTION LOSSES (kWh/m ² a)	pre 1980	1981-2000	2001-2010
Pipelines mainly in heated spaces (non/partly insulated)	5.8	3.7	3.7
Pipelines mainly in unheated spaces (non/partly insulated)	11	5.4	5.4
Pipelines well insulated	1.8	1.8	1.8

The available information, including the 67 heat generation systems for space heating and 50 for DHW production, along with the 32 space heating and 25 DHW distribution systems, were processed and the corresponding data along with the supporting pictures were incorporated in the TABULA matrix, as the national database.

Code_Syst	Description_National_SysH	Remark_Syst	FileName_Picture_SysH	Picture_SysH	Code_Syst_IC1	Code_SysH_EC2	Code_SysH_EC3	Code_Sy
Assistant	national description co		Renarce of the picture		code of the energy carrier 1	code of the energy carrier 2	code of the energy carrier 3	code of the generator
Clear up formats and formulas (1) Junt for datases temptation dataset forests and forestate. (2) Adds a surface of endy alland over to new repair	description in the native language		from subfield Tisser from subfield Tisser (example: "Tisser of be before pres	Pictures (Code_Country)" (E' for the instruction) he relevant range ing the button.				
	_			1	Tab. Const. Dier Dy Carry	Tals.Const.DurrgyCarn	e Tall. Const.EvergyCarte	Tato.Syst
	Text. And a second seco				VeOrer	VerChar		VerOw.
GR.Oil+Other.B_NC_CT+Solar.Gen.D9	κανούριος λάβητος στοθερής θερμοκρασίος - κατρελαίου/φυσκιού αερίου, με καλή θερυομόνωση με σύστημα αντιστάθμισης και αυτοματισμούς, Λενταικό δικτυο διανισμής - δικτυο μέσα στο κτίριο (μικρά ποσοστά διαλαύσεων σε μη		SysH_SolarCombr.gog	a i [™]	ol .	00er		GR.B.JNC.
GR.Oil+Other.B_NC_CT+Solar.Gen.10	Κανούρος Λέβητος στοθερής θερμοφοσίας - εετρελαίου/φυσκού αρχίου, με καλή θερμομόνικη με σύστιμα αντιστάθμοση και αυτοματοιρούς //Ευτρικό δετοιο διακτιλά - διακτιώ μάτα στο κτίριο μαιαστο αρχοτιτό διαλομοτικώ σε μη		SysH_SolarContx.jpg	1 ja 1	CH.	Other		GR.B_NC
GR.EI+Other.HP_Ground+Solar.Gen.01	Γεωθερμοή αντιλία θερμότητας. Για ζωνή Α΄ (Χεντρικά διλτύο δοινομής - διλτύο μέσα στο κτίριο (σημογτικό ποσοπό διελούσων σε μη θερμοτίμετους χώρους) -		SysH_geoBacker.jpg	11-1	в	Other		GR.HP_C
GR.EI+Other.HP_Ground+Solar.Gen.02	Γουθερμική αντίλο θερμάτησας. Για ζώνη Α. / Καντρικά δίκτυο διαγομής - δίκτυο μάσα στο κτίριο (σημαντικό παραστό διελεύσεων σε μη θερματήμενους χύρους) -		SysH_geoladar.jpg	53	B	Other -		GRHPJ
GR.El+Other.HP_Ground+Solar.Gen.03	Decemption participation of proceedings and according to the According to the Participation of the According to the According t		SystH_geolardar.jpg	53	8	Other		GR.HP.J
GR.RI+Other.HP_Ground+Solar.Gen.04	Γεωθερμική αντλία θερμάτητας; Για ζώνη Β. Λεντρικό δικτυα διατομής - δικτυα μέσα στο κτίρια (σημαντικά πασαστό διελεύσοων σε μη θερμανιδιμένους χείρους) - διαυλήγιο, με θεριομόνωση / Ηλαθερμικά σώστημα που καλώπα 65% της		SysH_geolleolar.pg	Ci-F	8	00er		GR.HP_0
GR.tl+Other.NP_Ground+Solar.Gen.05	Γεωθερμοή αντιλία θερμάτητας. Για ζώνη Β. Χεντρικά δικτυο διενομής - δικτυο μέσα στο κήριο ζωιρό ποσοστό διελούσεων σε μη Βερμανόμενους χώρους) - δισκυλήνοι, με Βερμομόνωση / Ηλισθερμικά σύστιμα του καλύπτο 60% της		Syst_profaster.jpg	53	0	00er		GR.HP_
GR.El+Other.HP_Ground+Solar.Gen.06	Γεωθερμοή αντίλο θερμότητας: Για ζωνη Β. Χεντρικό δικτυο διενομής - δικτυρ μάσα στο κτίριο (μικρό ποσιστό διελιοίσεων σε μη θερμανόμενους χώρους) - Σουλήνιο, με θερμομόνωση / Ηλισθερμικό σύστημα του καλώπτο \$5% της		Systi_peofisiler.jpg	53	8	Other		GR.HP_
GR.EI+Other.HP_Ground+Solar.Gen.07	Самария и интерното произнати с собрати и соб		Syst _geolasiar.gog	53	8	Other		GR.HP.
GR.II+Other.HP_Ground+Solar.Gen.08	Τερθερμική αντήλα θερμότητας; Για ζώνη Γ / Κοντρικά δίκτως δαίνομής - δίκτως μάσα στο κτίριο (σημαντικό ποσοστό δαλλώσων σε μη θερμανίωντους χώρους) - διοτωλήνιο, με θερυφαίνωση / Ηλαθερμικό σύστημα ποι καλύπτα 71% της		SysH_geoBaolar,3pg	5	8	Other		GR.HP_
GR.EI+Other.HP Ground+Solar.Gen.09	Γεμθεσμική αντλία θερμάπητας: Για ζώνη Δ. / Καντακά δικτυρ διαγομής - δικτυρ		SysH peolisticy.top		8	Other		GR.HP I
			and the second sec					

de_SysW	Remark_SysW	FileName_Picture_SysW	Picture_SysW	Code_SysW_EC1	Code_SysW_EC2	Code_SysW_EC3	Code_SysW_G1	Code_SysW_G2	Code_SysW_G3	Code_Type
Assistant	connent (internal)	flename of the picture		code of the energy carrier 1	code of the energy carrier 2	code of the energy carrier 3	code of the heat generator 1	code of the heat generator 2	code of the heat generator 3	code of the generator t
Clear up formats and formulas (1) Jam Viri John on a template a stand formulas (2) Jam Viri John on a template a stand formation of template (2) Alta is writter of emply abland row to reas reput		from subfolder "Pictor (normality of the subfolder Pictor before press	ictures \Sys\(Code_Country)" For the brah pictures) Indevantrange g the button.							
	_			Tals.Const.EnergyCarne	Tab.Const.EvergyCarre	Tab.Const.EnergyCarre	Tab.System, WG	Tab. System. WG	Tab. Dysters. WG	Tab.Carat
	Tave					VarChar				
GR.El+Other.E+Solar.SUR.02		SysW_Collectors + immersed resistance.jpg	乙酸	5	Other		GR.E.SUH.02	GR.Solar,Gen.01		E
GR.El+Other.E+Solar.SUH.03		SysW_Collectors - immersed resistance.jpg	乙酸	B	Other		GR.E.SUH.03	GR. Solar. Gen. 01		ε
GR.FLE.SUH.01		SysW_electric heaters.gog		в			GR.E.SJH.01			
GR.ELE.SUH.02		SystV_electric heaters.jpg		B			GR.E.SUH.02			
GRÆLE.SUHÆJ		SysW_electric heaters.jpg		6			GR.E.SUH.03			
GR.OH+EL8+E_Immersion.SUEL01		SysW_storage.pg	3	01	8		GR.8.5UH.02	GR.E_Immersion.Gen.03		
GR.Oil+tLB+t_Immersion.SUBL02		S isW_storage.pg		04	0		GR.8.5LH.03	GR.E_Immersion.Gen.01		-
										8
GR.El+Other.E+Solar.HUH.01		SysW_Colectors - immersed resistance.gog	1.12	6	Other		GR.E.MUH.02	GR.Solar.Gen.01		e
SR.EI+Other.E+Solar.HUH.02		SysW_Collectors - inversed resistance.jpg	1.02	đ	Other		GR.E.MUH.03	GR.Solar.Gen.01		
			1							E.
OR. ELECTORIANI		bysiv_electric neaters.gpg	1	2			uk.c.mon.01			e
SRELEMUH.02	The second se	SysW_electric heaters.pg	1.00	8			GR.E.MUH.02			

3 Application of the typology concept in the Hellenic residential building sector

3.1 The Hellenic Energy Performance method: TEE-KENAK

The TEE-KENAK software¹ is the official national tool developed by NOA for the Technical Chamber of Greece (TEE) that is used for the energy performance assessment of buildings in Greece. Its calculation engine is based on the EPA-NR tool, which was developed within the framework of a European project (www.epa-nr.org). The tool was upgraded by NOA to meet national requirements and the final European standards, incorporating the relevant national technical guidelines prepared by TEE (TOTEE 20701-(1-4)/2010), the concept of the reference building for benchmarking, the relevant national technical libraries, weather data, user's guide etc. The TEE-KENAK software is used as a stand-alone tool for energy audits and benchmarking. It is also adapted by all commercial software companies that develop building design tools for engineers.

The energy performance assessment takes into account the following aspects, covering the most common uses in a building:

- Space heating
- Space cooling
- Ventilation
- Humidification
- Domestic hot water
- Electrical energy for
 - Lighting
 - \circ $\,$ Pumps and fans

Calculations of space heating / cooling demand and consumption are performed using the quasi-steady monthly method in line with to EN ISO 13790 (2009) [3]. For the calculations of DHW demand and consumption, the monthly method is used in line with EN 15316.03.01 (2008) [4], EN 15316.03.02 (2008)[5] and EN 15316.03.03 (2008) [6].

The TEE-KENAK software provides results on the energy demand, consumption per energy-end use, primary energy and CO_2 emissions for a building in its actual state, but also for energy conservation measures/scenarios that may be proposed for the envelope and/or the E/M installations. In the case of retrofit interventions, the investment cost is also calculated along with the resulting simple payback period and the annual savings on energy, CO_2 emissions and operating cost.

3.1.1 Assumptions and simplifications

Calculations for the heating / cooling and DHW demand are taking into account several assumptions in order to minimize the judgment of the software user. Typical values for residential buildings are summarized in Table 3.1.

¹ http://portal.tee.gr/portal/page/portal/SCIENTIFIC_WORK/GR_ENERGEIAS/kenak

Parameters	S	Default values		
OPERATING TIME		18 hrs, 360 days / year		
HEATING CALCULATIONS				
Heating period				
	Climatic zones A, B	1/11 – 15/4		
	Climatic zones C, D	15/10 – 30/4		
Set-point temperature, heating me	ode (°C)	20		
Relative Humidity, heating mode	(%)	40		
COOLING CALCULATIONS				
Cooling period				
	Climatic zones A, B	15/5 – 15/9		
	Climatic zones C, D	1/6 – 31/8		
Set-point temperature, cooling mo	26			
Relative Humidity, cooling mode ((%)	45		
VENTILATION				
Required fresh air [m ³ /h/m ²]		0.75		
Annual domestic hot water consu	mption (m ³ /bedroom)	27.38		
INTERNAL GAINS				
Internal heat gains from lights, W	/m²	0.64		
Internal heat gains from persons,	W/m ²	4		
Internal heat gains from equipment	nt, W/m ²	2		
LIGHTING				
Lighting in the case of residential considered as a fixed value and it energy demand without being inc consumption breakdown report for	0.1W/m ² heated space			
SHADING (internal / external m	ovable)	NA		
DHW				
Mean hot water temperature (°C)		45		

Table 3.1: Assumptions and simplifications of the TEE-KENAK software for assessing the energy performance of residential buildings

The infiltration load is added to the ventilation load and there is no compensation with fresh air due to natural ventilation. Typical values for windows, doors, chimneys and exhaust grilles are summarized in Table 3.2.

Table 3.2: Assumptions of typical values for infiltration rates in residential buildings.

INFILTRATION RATE (m ³ /h/m ² opening area)	Door	Window
Wooden frame, single pane	11,8	15,1
Wooden frame, double pane	9,8	12,5

Wooden frame, double pane with ISO	7,9	10,0
Metal or synthetic frame, single pane	7,4	8,7
Metal or synthetic frame, double pane	5,3	6,8
Metal or synthetic frame, double pane with ISO	4,8	6,2
INFILTRATION RATE (m ³ /h)		
Chimney		20
Exhaust grilles		10

3.2 Assessment of the energy performance of buildings

The energy performance of all 24 buildings included in the Hellenic typology was assessed using the TEE-KENAK software. Results are illustrated in Figure 3.1. Overall, the SFH present higher energy demand for space and DHW heating than MFH of the same age in the same climate zone. This could be attributed to the fact that the majority of SFH are free standing buildings, while the majority of MFH are more sheltered as one or two of their facades are in contact with neighbouring buildings. Comparing buildings of the same age class it is obvious that, as expected, the colder the climate the higher the energy demand regardless their size.

Figure 3.1: Calculated thermal energy demand for space and domestic water heating for Single Family Houses (SFH) and Multi Family Houses (MFH)

The corresponding energy demand data were normalized by multiplying with the ratio of the climate zone's HDD to the HDD of climate zone B (Figure 3.2). Accordingly, excluding the weather impact from the data, normalization reveals that the construction year class plays an important role as more recently constructed

buildings (age class: 3) have better thermal insulation and, therefore, they exhibit lower energy demand.

Figure 3.2: Normalized thermal energy demand for space and domestic water heating for Single Family Houses (SFHnorm) and Multi Family Houses (MFHnorm).

It is a fact that the majority of buildings before 1980 are non-insulated while most of the buildings of the period 1980-2000 are partly or insufficiently insulated. The load bearing structure is not insulated for the buildings before 2000. Buildings of the period after 2000 are mostly insulated according to HBTIR, the old Thermal Insulation Regulation of 1980, yet the standards imposed by the new regulation (KENAK) are stricter. Thus, there is room for improvement regarding the energy related characteristics of the envelope in all classes of the residential building stock, which is reflected by the selection of buildings in the Hellenic typology. In many cases, buildings of the first two construction year classes (built before 2000) have already undergone partial refurbishment in the course of time and therefore, their energy related features deviate from the standard characteristics of their construction period. Indeed the most common retrofit intervention in old buildings is the addition of roof insulation, the replacement of single glazing with double ones and the introduction of higher efficiency boilers.

Two levels of refurbishment scenarios were defined for each building type; standard and ambitious. As of October 2010, all new buildings and existing buildings that undergo major renovations must be at least class-B in order to obtain a building permit. Both scenarios include a combination of interventions on the building envelope and the installed systems. The "**Standard**" **scenario** includes interventions on each building component in order to comply with the minimum requirements of KENAK foreseen in the case of major renovation. In the case of buildings constructed after 2000, major renovation is rather unlikely; therefore, the standard scenario in this case includes a set of interventions upgrading the building to rate class B. Additionally, solar collectors are introduced to cover at least 70% of the DHW demand. The "**Ambitious**" **scenario** involves all the standard scenario interventions combined with an incorporation of high performance technologies such as geothermal heat pumps and advanced building components (e.g. use of low-e windows with thermal breaks instead of common double glazing). The solar collectors are sized to cover 100% of the DHW demand as well as part of the space heating demand ranging from 10% to 80% in some cases. The detailed contents of the "Standard" and "Advanced" interventions on each of the 24 typology buildings are summarized in Tables 3.3 and 3.4, respectively.

Figures 3.3 and 3.4 illustrate the impact of the two energy saving scenarios on the primary energy consumed by the Hellenic typology buildings for space and DHW heating along with the corresponding simple payback period (SPBP), estimated using fuel costs reported for the year 2010. As expected, in both cases, the highest energy savings are achieved for the buildings of the first age band that are older and have a poor initial energy performance. Interventions on these buildings of the third age band, with energy related features close to the requirements of the new regulation. This fact combined with the high investment cost make these interventions less attractive for these buildings, as the corresponding estimated simple payback periods often exceed 20 years. Therefore, individual measures could prove more cost effective for this building category. The CO₂ emission reduction ranges from 17% to 80% for the Standard scenario and from 62% to 98% for the ambitious scenario.

Figure 3.3: Impact of the Standard and Ambitious Scenarios on the Single Family Houses of the Hellenic typology.

Figure 3.4: Impact of the Standard and Ambitious Scenarios on the Multi Family Houses of the Hellenic typology.

3.3 TABULA vs Hellenic Calculation Method (TEE-KENAK)

The TABULA calculation tool was used to assess the energy performance of all 24 buildings included in the Hellenic typology as well as the impact of the Standard and Ambitious scenarios on their performance. Results are illustrated in Figure 3.5 in comparison with the corresponding results from the Hellenic EPC using the official national software (TEE-KENAK). As illustrated, there are differences in the calculation results given by the two tools (TABULA and TEE-KENAK). These are attributed to the differences in the assumptions of each of the tools, which are summarized in Table 3.5. In order to overcome the problem of diversity in the national calculation methods that would not allow for a harmonized approach, the TABULA method has adopted constant values in some of the variables used in the calculation tool that apparently influence the results.

	TABULA method	TEE-KENAK method
Climatic data	local weather data is calculated from average values for each of the four	local weather data is available for different locations
	climatic zones	
Operational	24 hours/day for all heating days	18 hours/day for the heating
time		period
Floor area	heated floor area calculated using	heated floor area calculated using
	"internal" dimensions	"external" dimensions
Orientation	four fixed orientations for transparent	actual orientation of transparent
	surfaces (E, S, W and N)	surfaces
Thermal	adding a standard value in all	adding a standard value only in

Table 3.5: Basic differences between TABULA calculation method and the Hellenic calculation method and software (TEE-KENAK).

bridges	elements of the building envelope	opaque elements of the building envelope
Infiltration	choice from four fixed values; too low	input value, depending on the type
	for Hellenic buildings	and area of openings and the
		number of chimneys
Natural	fixed value in air changes per hour	fixed value calculated as a
ventilation	(ach)	function of the floor area (in
		m ³ /h/m ² of floor area)
Losses to the	reduction of transmission losses to	estimation of a new U-value for
ground	the ground by a factor of 0.5	the surface in contact to the
		ground, depending on the depth,
		the area and – in case of floor -
		the perimeter of the slab;
		reduction exceeds 50%
U-value and g-	average values for openings of	different values depending on the
value of	specific type	frame factor
openings		
Indirect solar	not taken into account	taken into account
gains on		
opaque		
surfaces of		
building		
envelope		
Intermittent	not taken into account	taken into account
heating		
Terminal units	not taken into account	input the efficiency
Auxiliary	fixed value depending on the floor	different value for each building
systems for	area	
heating		
Auxiliary	fixed value depending on the floor	not taken into account
systems for	area	
DHW		
Controls	not taken into account	taken into account for different
		controls resulting in a reduction of
		the final energy consumption for
		heating
DHW demand	typical values for single family and multi-family units	values depending on the number of bedrooms

A very important issue to take into account when comparing the results is the input related to climate. TABULA uses average values per climatic zone, whereas TEE-KENAK uses national climatic data that are based on meteorological measurements in the locations of the buildings. Thus, higher differences between the two methods are observed in the cases where the local climate significantly deviates from the average climate of the respective climatic zone.

A striking difference is observed in the case of the SFH building D1. This is a noninsulated building in the coldest climatic region of Greece. The building is located in a city which exhibits an average temperature in winter 4°C higher than the corresponding zone average. Further investigation has revealed that the difference between the two methods is reduced when the actual climatic data of the building location are fed in to TABULA. Thus, the differences between the two methods that are attributed to the climate input are accentuated in the cases of non-insulated buildings, as they are more sensitive to the impact of the weather. Figure 3.5 illustrates comparatively the energy demand of the Hellenic typology buildings as reported by TABULA and TEE-KENAK in kWh per m² heated floor area. In TABULA the floor area is input as measured in internal dimensions whereas in TEE-KENAK external dimensions are used. If TABULA results are corrected using the external dimensions for the heated floor area calculation (green bars in Fig.3.5), the differences from TEE-KENAK are reduced. In any case, TABULA predicts higher energy demand in 63% of the cases.

Figure 3.5: Comparison of TABULA with the Hellenic calculation method and software (TEE-KENAK). The green bars correspond to the TABULA results corrected for the TEE-KENAK reference area (heated floor area in external dimensions)

3.3.1 Comparison with actual energy consumption

Data on the actual energy consumption was available for 17 out of the 24 buildings of the Hellenic typology, specifically, for 9 single family and 8 multifamily houses. Figure 3.6 illustrates the comparison of the results produced by TABULA and TEE-KENAK with the actual energy consumption of oil available by the building owners.

Figure 3.6 illustrates the comparison of the two methods with actual oil consumption data. Calculated results are expressed in kWh/m² reference area (internal dimensions). In most cases the differences between the calculated and the actual data are rather large. This may be attributed to the number of operating hours, which, in both methods is set very high. TABULA considers a 24hr operation for residential buildings, whereas TEE-KENAK considers an 18hr operation. In reality, the daily operating period of the heating system in Hellenic residential buildings is much shorter. As expected, the calculated results are significantly higher than the actual oil consumption. Furthermore, the actual energy consumption in the Hellenic residential buildings is often affected by the social and economic status of the owner. Households of lower income tend to spend less energy at the expense of their living standards, while high income households tend to overspend it, as a result of

carelessness. Therefore, an in-depth comparison of the calculated and actual energy consumption would not be possible in the context of this study.

Figure 3.6: Comparison of the estimated thermal energy consumption using TABULA and TEE-KENAK, with actual energy consumption for (a) SFH and (b) MFH of the 17 Hellenic typology buildings

The solid blue line in figures 3.6a and 3.6b represents the national standards for the energy consumption for heating for SFH and MFH buildings respectively in the four climatic zones. Currently, there are no official national averages for the Hellenic residential building stock. The values presented in this graph come from a recent study [7] and they are based on the analysis of the available information on actual oil consumption from 6550 residential buildings located throughout the country [8].

	'STANDARD'					ENVELOPE		evet	DES		
	SCENARIO ADD IN) INSUL	ATION		5151	RES		
Bldg	No	Clim. Zone	Age Band	Roof	Walls	Floor (pilotis)	WINDOWS	REPLACE BOILER	INSULATE PIPES	SOLAR COLLECTORS (60% DHW coverage)	
1		Α	1	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
2		A	2	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
3	ES ES	A	3					\checkmark		\checkmark	
4	SN	В	1	\checkmark	\checkmark		\checkmark	\checkmark	✓	\checkmark	
5	РН	В	2	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
6	Γ	В	3	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
7	AM	С	1	\checkmark	\checkmark		√ (low-e)	\checkmark	\checkmark	\checkmark	
8	ш	С	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark	\checkmark	
9	ЮГ	С	3	\checkmark	\checkmark			\checkmark		\checkmark	
10	SIN	D	1	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark	\checkmark	
11		D	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark	\checkmark	
12		D	3	\checkmark	\checkmark		√ (low-e)	\checkmark		\checkmark	
13		A	1	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
14		A	2	\checkmark	\checkmark		\checkmark	\checkmark	✓	\checkmark	
15	S	Α	3	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
16	ISU	В	1	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
17	Р	В	2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
18	Z	В	3		\checkmark			\checkmark	\checkmark	\checkmark	
19	١M٢	С	1	\checkmark	\checkmark		√ (low-e)	\checkmark	\checkmark	\checkmark	
20	1 F/	С	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	~	\checkmark	
21		С	3	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	~	\checkmark	
22	M	D	1	\checkmark	\checkmark		√ (low-e)	\checkmark	~	✓	
23		D	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	✓	\checkmark	
24		D	3	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	

	Table	3.3:	Sync	optic	presentatio	on of the	e "Standard"	" Scenario	interventions	on the b	buildings o	of the l	Hellenic ty	polod	V
--	-------	------	------	-------	-------------	-----------	--------------	------------	---------------	----------	-------------	----------	-------------	-------	---

	'AMBITIOUS'			, ENVELOPE					eveteme		RES
		SCENA	RIO	ADD INSULATION REPLACE			REPLACE		3131 EWI3		
Bldg No)	Clim. Zone	Age Band	Roof	Walls	Floor (pilotis)	WINDOWS	REPLACE BOILER	INSULATE PIPES	GHP	SOLAR COLLECTORS (100% DHW coverage, partial space heating)
1		A	1	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
2		A	2	\checkmark	\checkmark	\checkmark	√ (low-e)		\checkmark	\checkmark	\checkmark
3	В	A	3	\checkmark	\checkmark		√ (low-e)	\checkmark			\checkmark
4	SUC	В	1	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
5	H	В	2	\checkmark	\checkmark		√ (low-e)			\checkmark	\checkmark
6	Ľ	В	3	\checkmark	\checkmark		√ (low-e)	\checkmark	\checkmark		\checkmark
7	AM	С	1	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
8	щ	С	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark
9	I GL	С	3	\checkmark	\checkmark		√ (low-e)	\checkmark			\checkmark
10	SIN	D	1	\checkmark	\checkmark	\checkmark	√ (low-e)		\checkmark	\checkmark	\checkmark
11		D	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark
12		D	3	\checkmark	\checkmark		✓ (low-e)	\checkmark			\checkmark
13		A	1	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
14		A	2	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
15	S	А	3	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark			\checkmark
16	NSI	В	1	\checkmark	\checkmark		√ (low-e)		\checkmark	\checkmark	\checkmark
17	Р	В	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark
18	Ľ	В	3	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark
19	M	С	1	\checkmark	\checkmark		✓ (low-e)		\checkmark	\checkmark	\checkmark
20	Ξ	С	2	\checkmark	\checkmark	\checkmark	✓ (low-e)	\checkmark	\checkmark		\checkmark
21	٦LT	С	3	\checkmark	\checkmark	\checkmark	✓ (low-e)	\checkmark	\checkmark		\checkmark
22	M	D	1	\checkmark	\checkmark		√ (low-e)	\checkmark	 ✓ 		\checkmark
23		D	2	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark
24		D	3	\checkmark	\checkmark	\checkmark	√ (low-e)	\checkmark	\checkmark		\checkmark

Table 3.4: Synoptic presentation of the "Ambitious" Scenario interventions on the buildings of the Hell	enic typology
---	---------------

4 Modeling the energy balance of the Hellenic building stock

4.1 Building Typology Approach

The buildings included in the Hellenic typology are real examples that can be considered as representative of the corresponding classes. However, due to peculiarities in their initial construction or refurbishment actions taken on their envelope and/or system installations over the years, they may not reflect the typical buildings of their class. Thus, the set of buildings included in the TABULA typology has to be elaborated before it is used in the building stock balance model.

The derivation of the national energy balance was based on "**typical**" **buildings** defined for each of the 24 typology classes. In order to define the characteristics of the "typical" buildings in all the building classes of the Hellenic typology, it would be necessary to have detailed statistical data regarding the construction and system installations in the building stock. Due to the lack of official national data in the required level of detail, it was decided that the "typical" buildings used in this study would have the same architectural features as the "real examples". In collaboration with experts active in the field of building construction from the TABULA National Advisory Group (NAG), percentages were assigned to each type in the "Building Element" sub-typology. Similarly, each system type in the "Systems" sub-typology was assigned a percentage. In both cases the percentages reflect the frequency of occurrence of the types in the different parts of the building stock depending on the building size, age band and climatic zone.

The thermal characteristics of the typical building envelope (U-values for opaque and transparent elements as well as g-values for transparent elements) were derived as weighted averages using the frequencies of occurrence for all the existing types defined in the building element typology for each different class. Similarly, the installed system characteristics (performance coefficients for heat generation and distribution systems) were derived as weighted averages using the frequencies of occurrence for all the system types defined in the system types defined in the system types defined in the system typology for each different class.

4.2 Available Data

In order to form a building stock model it is necessary to determine frequencies for each building type. The main data sources for the derivation of the statistical data required for this analysis include:

- The Hellenic Statistical Service
- Existing and on-going studies
- National standards and regulations providing information on building construction types and heat supply systems
- Empirical data for the Hellenic building stock

Table 4.1 outlines the data that could be retrieved from the above sources regarding the Hellenic residential building sector. The available data is analytically presented in Appendix I.

However the level of detail of the available data is not sufficient for deriving the building stock model. Frequencies of buildings corresponding to the different element and system types are not available in sufficient detail, while information on their state of modernization (refurbishment action, year) is restricted to the insulation level (absent, partial or full). Moreover, heat generation systems are not reported in detail, neither for water nor for space heating, while no frequencies are available on heat distribution systems what so ever.

Frequency	Description of data (availability: per building size, age band and climatic zone)
Building types of the national building stock	Number of buildings, floor area (m ²)
Insulation level and window types	Number/and percentage of buildings with - non-insulated walls/roofs - partly insulated walls/roofs
Centralization of the heat supply (for space heating)	Percentages of buildings
Heat generation (for space heating)	Percentages related to number of buildings with central heating systems
Solar thermal systems	Percentages of apartments in SFH/MFH buildings
Air conditioning systems	Number of apartments in SFH/MFH buildings
Control of central heating systems	Number of buildings

Table 4.1: Available frequencies regarding the Hellenic residential building stock.

The gaps in the availability of frequencies are attributed to the absence of systematic collection of relevant information. Most of the statistical data on the residential building sector come from the latest Censuses carried out in 1990 [9] and 2000 [10]. These data include number and size of buildings as well as floor area per building age band and geographic region. Further analysis based on this data [1] resulted in frequency distributions of buildings according to their level of thermal insulation, the installed systems for heat generation and the presence of solar systems for hot water heating.

In the absence of sufficient official data for the derivation of the national energy balance model it was decided to use "typical buildings", as mentioned in the previous section. The thermo-physical properties of the envelope, as well as the expenditure coefficients per "typical" building, were derived as weighted averages per building class. The weighting factors for each category were well educated guesses derived in collaboration with NAG experts active in the field of construction and currently constitute a realistic estimate of the evolution of the construction and renovation trends over the years (Appendix II). Table 4.2 summarizes the resulting "typical" values of the thermal transmission coefficient for the main components of the building envelope for each of the 24 building classes of the Hellenic residential building typology.

Table	4.2:	"Typical"	values	(weighted	averages)	of	the	thermal	transmission
coeffic	ien <u>t (</u> l	kWh/m²K) :	for the m	nain compor	nents of the	buil	ding	envelope	

	S ingle	e Family House	s (SFH)	Multi Family Houses (MFH)						
	-1980	1980-2000	2000-	-1980	1980-2000	2000-2001				
Climatic Zone A										
Wall	2.36	1.28	1.01	2.13	1.11	0.81				
Roof	3.12	1.68	0.91	2.96	1.33	0.72				
Floor	3.07	2.95	2.94	3.07	2.21	2.08				

Window -U	4.89	4.82	3.33	5.14	4.88	4.40					
- g	0.60	0.57	0.54	0.62	0.58	0.55					
Climatic Zone B											
Wall	2.02	0.96	0.86	2.06	1.09	0.75					
Roof	2.72	1.09	0.70	2.85	1.28	0.62					
Floor	2.60	2.02	1.93	2.13	1.52	1.00					
Window -U	4.71	4.51	3.33	4.99	4.25	3.55					
- g	0.59	0.56	0.54	0.61	0.51	0.55					
Climatic Zon	Climatic Zone C										
Wall	2.02	0.96	0.86	2.06	1.09	0.75					
Roof	2.72	1.09	0.70	2.85	1.28	0.62					
Floor	2.28	1.01	0.79	2.68	1.21	0.74					
Window -U	4.71	4.51	3.33	4.99	4.25	3.55					
- g	0.59	0.56	0.54	0.61	0.51	0.55					
Climatic Zon	e D										
Wall	2.61	1.02	0.86	2.00	1.02	0.75					
Roof	3.06	1.15	0.71	2.76	1.20	0.62					
Floor	2.47	1.00	0.79	2.10	1.06	0.66					
Window -U	4.63	4.33	3.33	4.92	4.52	3.53					
- g	0.60	0.56	0.54	0.61	0.56	0.55					

Similarly, Table 4.3 summarizes the "typical" expenditure coefficients (using the Higher Calorific Value) for the systems installed in the 24 buildings of the Hellenic typology, based on their size and time construction period. In this case, no distinction is made for different climatic zones, since they are applicable for the entire country.

Table 4.3: "Typical" values (weighted averages) of the expenditure coefficient (higher calorific value) for the space and water heating systems

	S ingle	Family House	es (SFH)	Multi Family Houses (MFH)					
Energy carrier	-1980	1980-2000	2000-2010	0-2010 -1980 1980-2000		2000-2010			
Space Heating Systems									
Fuel	1.38	1.30	1.22	1.37	1.25	1.20			
Electricity	0.97	0.64	0.29	0.94	0.71	0.28			
Water Hea	ting Systems	s -							
Fuel	1.33	1.26	1.31	1.35	1.26	1.31			
Electricity	1.05	1.03	1.03	1.05	1.03	1.03			

Finally, Table 4.4 summarizes the "typical" performance coefficients for the distribution system. In this case, no distinction is made for different building sizes or energy end use, so they are applicable for the entire building stock based on the time construction period.

Table 4.4: "Typical" values (weighted averages) of the performance coefficient for the distribution systems of single and multi family houses, according to the insulation level of the system

Lovel of insulation	Single / Multi Family Houses							
	- 1980 1980-2000 2000-2							
Pipelines non/partly insulated	0.89	0.93	0.93					
Pipelines well insulated	0.97	0.97	0.97					

Further assumptions that were made for some parameters affecting the performance of the "typical" buildings are summarized in Table 4.5.

Infiltration (m ³ /hm ² _{window})	
Single glazing, wooden frame	13.45
Double glazing, wooden frame	11.15
Single glazing, aluminium/PVC frame	8.05
Double glazing, aluminium/PVC frame	6.05
Thermal bridges	
Prior to 1980	No
After 1980	Yes, medium (U _{opaque elements} +0.1 W/m ² K)
Space heating system controls	
Prior to 1980	no controls
After 1980	Zone thermostats,
	Indoor-outdoor temperature
	compensation
Performance of heat emission componer	nts – space heating
heating medium: high temperature water	0.87
(ie: radiators, convectors)	
heating medium: low temperature water	0.91
(ie: fan coils, underfloor systems)	
Performance of heat emission componer	ts – DHW heating
Local systems (ie. electric heaters)	0.98
Central systems	0.95
Performance of heat distribution systems	s – DHW heating
Local systems (ie. electric heaters)	1
Central systems, insulated	0.92
Central systems, non-insulated	0.84
Domestic hot water	
Daily consumption lt/(person.day)	50

 Table 4.5: Parameters affecting the energy performance of the "typical" buildings

4.3 Energy Balance Method

The TEE-KENAK software was used for the calculation of the heating energy consumption of typical buildings, representative of the residential building stock in accordance to the TABULA concept, in order to derive the national energy balance of the residential sector. Average climatic data were used for each of the four climatic zones. TABULA focuses on the heating energy for space and DHW, which represents the greatest part of the total energy consumed by the residential sector. Therefore, the balance calculations are restricted to the heating energy consumption. Despite the penetration of solar collectors for DHW preparation, electricity is the most common energy carrier serving as the main source or as an auxiliary source for DHW production in Greece. Only a small percentage of buildings use a central oil boiler for DHW. Among the 24 buildings included in the Hellenic typology, only three use oil for water heating; the rest use electrical heaters.

Moreover, in the available data from the published national energy balances the electrical energy consumption is not reported per energy-end use. Consequently, the officially reported electricity consumption includes additional energy consumed for lighting and household appliances and it is not possible to separate the part that corresponds to the consumption for space and/or DHW. Therefore, the energy balance in the present study is calculated taking into account only thermal energy

consumption; electricity as well as the part covered by renewable energy sources, are excluded.

The implemented procedure includes the following steps:

- 1) Use TEE-KENAK software for the calculation of the heating energy consumption of the 24 "typical" buildings representing each of the classes included in the Hellenic typology.
- 2) Use frequencies expressing the number of buildings per typology class to derive the total heating energy consumption per class.
- 3) Sum up the thermal energy consumption of all classes to derive the balance of the heating energy consumption in the residential building sector.

4.4 Energy Balance of the Residential Building Stock

The buildings considered in this study are permanent dwellings, with continuous occupancy throughout the year and do not include summer (vacation) dwellings. The permanent dwellings average about 68% of the total dwellings stock throughout the country [10]. The floor area of permanent dwellings for each of 24 residential buildings categories is given in Table 4.6. This data has been published in [9] and it is based on available information from:

- a detailed register of 6550 dwellings, which was performed during the period 1987–1988 [8]
- results of the 1990 census [10]
- the construction activities after 1990 [11]

The corresponding data for the period 2000-2010 was estimated based on the assumption that the annual growth rate of the number of dwellings during 2002–2010 is equal to the average of the two previous decades. During the 1980s, the average annual growth rate of the number dwellings was 1.65%, while during the 1990s it dropped to 1.46% [1].

The TEE-KENAK calculation results regarding the heating energy consumption of the 24 "typical" buildings representing each of the classes included in the Hellenic typology are summarized in Table 4.6.

In order to derive the thermal energy consumption for the entire residential building stock it was necessary to transform the total floor area into heated floor area. For this purpose, the heated floor area was calculated as a percentage of the total floor area given in Table 4.6. Specifically, it was assumed that the percentages of the total floor area that is actually heated are 70% and 80% for SFH and MFH buildings, respectively. This assumption is necessary in order to account for unheated areas, e.g. corridors, stairwells, cellars as well as basements that are usually unheated spaces.

Table 4.6: Total floor area per building class in the Hellenic permanent residential building stock and calculation results for "typical" buildings using the TEE-KENAK software.

Climatic Zone A B C D	Age Band	Total floor a building s	area - entire stock (m²)	Primary ei (kWh/m ² he	nergy (*) ated floor area)	Energy D (kWh/m ²	emand (**) heated floor area)	Energy Consumption (*) (kWh/m ² heated floor area)	
		SFH	MFH	SFH	MFH	SFH	MFH	SFH	MFH
	1	24010738	2987390	216.4	92.9	112.8	66.2	195.2	80.8
А	2	16535476	6309271	219.9	61.7	152.5	56.3	197.3	52.8
	3 (+)	13226145	6119221	87.6	47.2	59.6	57.1	80	38.4
	1	59222241	52591634	228.3	151.1	124.7	100.7	204.9	132.8
В	2 (+)	30665932	38614093	98	89.1	61.6	69.3	89.5	78.6
	3	18726225	35037293	138.1	67.7	108.2	74	122.8	56.6
	1	45250489	18500091	282.5	288.5	159.5	182.2	252.3	254.5
С	2	23051218	19554006	183.3	131.90	140.4	101.3	162.3	115.70
	3 (+)	16257744	18483636	228.3	79.50	138.1	68.9	178.4	68.90
	1	5193004	527809	566.9	327.10	301.7	299.4	511	458.00
D	2	3184299	1248487	338.7	129.10	252.9	151.4	298.7	177.70
	3	2475032	1145100	221.7	112.80	170	97.5	197.5	98.10

(*):space heating only (auxiliary systems included), (**):space and DHW heating

The (+) sign indicates that SFH buildings of the class use an oil boiler for both space and DHW heating.

Using the TEE-KENAK software with the data from Tables 4.1-4.5 and taking into account the above assumptions, the energy balance for the residential building stock was derived. Results are summarized in Table 4.7. The "thermal" part of the energy consumption includes mainly space heating and only in three cases (buildings marked with the (+) sign in Table 4.6) where oil boilers are used for DHW preparation, it also includes water heating. The "electrical" part includes mainly DHW heating and the consumption of the auxiliary heating systems (e.g. pumps).

				/								
	Energy Consumption (Mtoe)			Energy Demand (Mtoe)			Primary Energy (Mtoe)			CO ₂ (Mt)		
	SFH	MFH	Total	SFH	MFH	Total	SFH	MFH	Total	SFH	MFH	Total
Thermal	2.87	1.47	4.35							9.37	2.55	11.91
Electrical	0.31	0.39	0.70									
Space Heating				1.72	0.93	2.65						
DHW				0.25	0.35	0.60						
Total	3.19	1.86	5.05	1.97	1.28	3.25	3.87	2.55	6.42			

Table 4.7: Calculation results for different quantities of energy balance for permanent residential building stock (year 2010).

4.4.1 Comparison to National Statistical Data of the Residential Building Stock

The following analysis is based on national energy consumption data as reported by the Hellenic Ministry of Environment and Climatic Change – YPEKA [12] for the years 2000-2008 and CO₂ emissions taken from official reports of the European Union [13] for the years 2000-2007. Table 4.8 summarizes the official energy consumption and CO₂ balance reported for the Hellenic residential building sector.

Year	All energy sources (ktoe)	Electricity (ktoe)	RES (ktoe)	Thermal (ktoe)	Thermal (Mtoe) - permanent dwellings (*)	CO ₂ emissions (Mt)
2000	4486	1222	801	2463	2.27	7.60
2001	4701	1251	801	2649	2.44	8.20
2002	4914	1356	800	2758	2.54	8.40
2003	5485	1414	799	3272	3.01	10.00
2004	5381	1449	801	3131	2.88	9.60
2005	5488	1451	803	3234	2.98	9.90
2006	5490	1520	816	3154	2.90	9.50
2007	5330	1544	921	2865	2.64	8.60
2008	5142	1559	777	2806	2.58	

Table 4.8: The official energy consumption and CO_2 emission balance reported for the Hellenic residential building sector [12, 13].

(*) calculated values

In order to derive the thermal energy consumption of the permanent dwellings it was assumed that non-permanent dwellings, which represent 32% of the total residential building stock, operate for only 3 months per year. The values of the thermal energy consumption were adjusted accordingly.

The CO_2 emissions from households reported in [13] refer to space and DHW heating excluding the related electricity consumption [1]; therefore, they refer to the thermal part of the energy consumption. Based on the energy consumption and CO_2 emission data reported in Table 4.8, the average annual growth rate (AAGR) was derived. Specifically:

AAGR (thermal energy consumption)₂₀₀₀₋₂₀₀₈ = 1.46%AAGR (CO₂ emission)₂₀₀₀₋₂₀₀₇ = 1.56%

Given that the present analysis aims to reflect the building stock for the year 2010, the corresponding values of the thermal energy consumption and CO_2 emissions were estimated using the corresponding AAGRs. The resulting values were:

- Thermal energy consumption for permanent dwellings (2010) = 2.66 Mtoe
- CO₂ emissions from permanent dwellings (2010) = 8.29 Mt

A comparison of the initial energy balance results presented in section 4.4 with the corresponding official national balance reveals an overestimation of about 63% in the thermal energy balance. As mentioned in section 3.3 (Table 3.5), the TEE-KENAK software performs the calculations based on a default 18hr per day operation of residential buildings throughout the year. In order to adapt the results so that they better reflect the actual operating hours of residential buildings, the initial consumption and CO_2 emission results (Table 4.8) were adjusted on the basis of the following assumptions. These were derived in collaboration with experts from NAG, who are active in the field of building construction and maintenance, without providing them any access to the original figures in order to minimize any predisposition or bias. At present, as there is no official reference on this issue, the following assumptions are considered to be a realistic approximation of the Hellenic residential building stock operating patterns:

- SFH buildings: 10% have an 18 hr and 90% have a 12 hr operation per day
- MFH buildings: 10% have a 12 hr and 90% have a 9 hr operation per day

The resulting adapted energy balance to reflect the actual operating hours is summarized in Table 4.9.

	Energy Consumption (Mtoe)		Energy Demand (Mtoe)		Primary Energy (Mtoe)			CO ₂ (Mt)				
	SFH	MFH	Total	SFH	MFH	Total	SFH	MFH	Total	SFH	MFH	Total
Thermal	2.01	0.76	2.77							6.56	1.32	7.87
Electrical	0.28	0.39	0.66									
Space Heating				1.21	0.48	1.68						
DHW				0.25	0.35	0.60						
Total	2.29	1.15	3.44	1.46	0.83	2.29	2.71	1.32	4.03			

Table 4.9: Adapted calculation results for different quantities of energy balance for the permanent residential building stock (year 2010).

Comparison of the adapted calculated thermal energy balance (Table 4.9) with the officially reported value reveals that the adjustment improved the predictions significantly, as the overestimation dropped down to 4.2%. The CO_2 emissions were found to be underestimated by approximately 5%. These deviations are considered to be acceptable for the level of detail of the present study.

4.4.2 Calculation of Energy Saving Potentials

Transposition of the European Directive 2006/32/EC took effect in June 2010 by the national law N.3855/2010, introducing various energy efficiency improvement measures, energy service companies - ESCOs, third party financing - TPF and other instruments, in order to achieve by 2016 an overall national indicative target of 9% energy conservation. Applying this target to the thermal energy consumption of residential buildings it is found that it should reach 2.44 Mtoe in 2016. As discussed in section 4.4.1, the average annual growth rate over the period 2000-2008 is about 1.46%. Using this rate for the business as usual (BaU) scenario, the thermal energy consumption for 2010 and 2016 is estimated to reach 2.66 and 2.90 Mtoe, respectively.

Figure 4.1 illustrates the evolution of the annual thermal energy consumption for the Hellenic permanent residential building stock, with 2008 being the year with the most recent published data. Accordingly, the national indicative target of 9% for 2016 applied to the thermal energy consumption of permanent residential buildings requires savings of 0.54 MToe from 2005 data. Savings can be achieved through energy efficient measures and scenarios. As discussed in section 3.2, in the framework of TABULA two different scenarios have been studied: the Standard and the Ambitious scenario, which target different levels of interventions in the buildings' thermal envelope and E/M installations with the exploitation of renewable energy sources (RES), which are summarized in Table 4.10.

The "**Standard**" scenario aims at upgrading the buildings of the first two time construction periods (pre-1980, 1980-2000) to meet the national standards for major refurbishment of buildings, in accordance with KENAK for the four climatic zones. Buildings of the third time construction period (2000-2010) in all climatic zones are upgraded to rate B. Solar collectors are introduced or added as necessary to cover up to 60% of the DHW heating demand.

The "**Ambitious**" scenario aims at upgrading the buildings further, by incorporating higher performance technical solutions along with RES technologies, such as geothermal heat pumps (where possible) and thermal solar collectors to fully cover the DHW heating demand (if possible), as well as part of the space heating demand.

Figure 4.1: Evolution of the thermal energy consumption in permanent dwellings since 2000 and estimated for 2016 to reach the national indicative energy savings target of 9% in Greece.

		STANDARD SCENARIO AMBITIOUS SCENARIO						
Envelope	Add insulation	U-values foreseen by KENAK for climatic	or each element according to zone					
	Replace windows	U-values foreseen by KENAK for each climatic zone Improve air tightness as necessary	Introduce double pane low-e					
E/M Systems	Solar collectors	Cover up to 60% of DHW demand	Cover 100% of DHW demand + part of the space heating demand					
	New boiler & controls	System efficiency foreseen by KE power	NAK according to installed					
	Pipe insulation	System efficiency foreseen by KENAK according to transferred power						
	Geothermal Heat Pump		Use this technology if existing installations permit it					

Table 4.10: General description of Standard and Ambitious scenario.

The TEE-KENAK software was used in order to calculate the energy savings achieved by applying the two scenarios to the typical buildings. Results are summarized in Table 4.11. Note that in some cases the estimated thermal energy savings correspond to a fuel switch, for example, from oil to electricity (i.e. replacing an oil boiler with a geothermal heat pump). The data in Table 4.11 refer to final thermal energy consumption and do not reflect the resulting increase of electrical energy consumption or the increased primary energy consumption for power generation. This is also elaborated in the following discussion.

Table 4.11: Calculated savings in the thermal energy consumption and in the total primary energy from the application of the Standard and Ambitious scenario in the typical buildings.

		S	TANDARD	SCENAR	10	AMBITIOUS SCENARIO				
Climatic Zone	Age Band	Thermal energy consumption		Total p energy	Total primary energy savings		al energy Imption	Total primary energy savings		
20110	Danu	savings (%)		(%	(%)		savings (%)		6)	
		SFH	MFH	SFH	MFH	SFH	MFH	SFH	MFH	
	1	80.7	80.8	79.5	72.0	100.0	100.0	94.9	97.9	
А	2	80.1	63.5	75.5	61.3	100.0	100.0	95.8	95.6	
	3 (+)	12.6	33.9	12.1	48.1	62.8	90.3	61.8	94.3	
	1	80.2	76.8	76.2	70.4	100.0	100.0	95.5	91.5	
В	2 (+)	57.8	63.8	57.3	61.9	100.0	79.7	90.0	85.8	
	3	26.4	29.0	29.5	40.7	46.8	60.5	60.7	74.1	
	1	79.3	80.0	75.5	73.4	100.0	100.0	95.4	86.6	
С	2	60.5	61.9	60.5	60.5	100.0	76.4	91.2	80.9	
	3 (+)	37.6	42.3	43.0	48.6	57.0	66.3	66.6	77.8	
	1	80.3	76.9	77.8	74.0	100.0	85.5	94.3	87.5	
D	2	40.1	46.1	46.0	49.3	62.1	63.8	73.7	72.1	
	3	42.2	30.4	45.7	41.4	59.3	62.0	67.8	76.1	

The (+) sign indicates that SFH buildings of the class use an oil boiler for both space and DHW heating.

The potential energy conservation achieved as a result of the two scenarios is very high, as they represent a holistic approach towards energy efficiency, affecting both the envelope and the installed systems and including RES for covering part of the demand. As expected, the savings resulting from the Ambitious scenario are higher than those of the Standard scenario. The use of geothermal heat pumps (GHPs) minimizes the thermal energy consumption leading to savings close to 100%. However, the operation of the GHPs introduces an increase in the total electrical energy consumption. This will have to be added to the electrical energy balance (i.e. primary energy for power generation), thus the overall impact of the Ambitious scenario on the total energy balance will be smaller. Based on estimates regarding the COP and electricity consumption of GHPs given by NAG experts, it was calculated that the resulting increase in the total primary energy consumption would not exceed 1%. However, further analysis of the energy balance is not possible since there is no official data reported on the breakdown of primary energy use of power generation for the different end-uses.

Application of the Standard and Ambitious scenarios could lead to a significant reduction in the energy consumption of the residential building sector. However, application of such scenarios on the entire building stock is not practical due to the associated high investment cost. Therefore, a more realistic assessment was attempted by considering the potential application of these scenarios on a percentage of the residential building stock with different energy savings potential.

Taking into account the calculated energy savings reported in Table 4.11 and the target value of thermal energy consumption for 2016, the energy balance model was used in order to derive the percentage of the building stock that will have to adopt the Standard or the Ambitious scenarios to achieve the target savings. Indicatively, it was found that the national target could be reached by applying the Standard scenario in 15% of the residential buildings of the first age band (built prior to 1980) and 30% of the buildings of the second age band (built between 1980 and 2000). The same

could be achieved by applying the Ambitious scenario in 10% and 25% of the buildings in the corresponding age bands.

Apparently, it is possible to derive different combinations that could satisfy this goal. In a more strategic approach, a cost-benefit analysis could indicate the most appropriate combinations of building classes in which the adoption of such scenarios would maximize savings for different investment costs, based on fund availability and national priorities. However, this is beyond the scope of the present study.

4.5 Conclusion

The present work was performed in order to examine the possibility of using the Hellenic building typology created within the framework of TABULA in modelling the national energy balance. An energy balance model was set up and tested against officially reported data, with success.

In absolute terms, the results of the present model should be evaluated taking into account the assumptions that were necessary to make, in order to overcome the lack of available data and statistics regarding the residential building stock at the required level of detail. However, collaborative work with NAG experts from the field of building construction and energy monitoring has made it possible to feed the model with the data by making well justified estimates, where possible.

Some of the most important sources of uncertainty are related with the definition of:

- building classes
- typical buildings
- thermal characteristics of the typical buildings
- system expenditure coefficients of the typical buildings
- operational characteristics, e.g. operating hours of the heating system
- estimation of the heated floor area for each typology class

In the future, as more information on the residential building stock becomes available through the exploitation of the new data from the ongoing building energy audits and generation of EPCs throughout the country, it will be possible to minimise the above sources of uncertainty and feed the model with updated official statistical data.

Nevertheless, the typology concept has proved to provide a flexible tool for estimating the impact of energy saving scenarios on the energy performance of the residential building stock.

5 Extension of the typology concept to the non-residential building sector

5.1 Existing typology concepts

In Greece, there is no elaborate monitoring of the building stock. The process of the Energy Performance Certification of buildings was launched in January 2011 when selling and renting entire buildings. The certification of renting building units (e.g. apartments) has been postponed, for the time being, until January 2012. So far, very limited efforts have been carried out to successfully collect and analyze detailed data on the building sector and emphasis has been given to the residential sector. Therefore, comprehensive information and official data for the non-residential (NR) building stock is rather limited, although it is the fastest growing energy demand sector.

Knowledge on the energy-related aspects of the NR building sector can be derived from treating scattered data coming from various sources, mainly the building construction activities, statistical reports periodically issued by the National Hellenic Statistical Service (NHSS) and various publications usually focussing on the energy retrofitting of representative examples in the tertiary sector.

NOA's knowledge on the NR building sector comes from:

- involvement in European projects related to this subject over the past 15 years (TOBUS [14], XENIOS [15], EPA-NR [16] and DATAMINE [2])
- involvement in national projects to assess the building stock, the potential for energy conservation and the abatement of environmental pollution
- involvement in short energy audits and energy studies in the framework of consulting activities.

In the framework of TOBUS and XENIOS projects dealing with the retrofitting of office and hotel buildings respectively, various representative buildings were thoroughly investigated in order to assess the potential of retrofit measures for upgrading the indoor environmental quality and energy performance of the buildings. Relevant information were also collected thus revealing any national data. In the framework of EPA-NR project dealing with the energy performance assessment of NR buildings, a total of six buildings (an office, a hospital and four schools) were also audited regarding the energy-related characteristics of their envelope and the installed systems. Data from a total of 84 NR buildings have been included in DATAMINE structure in a preliminary test of its applicability in extracting results regarding the Hellenic building stock based on data coming from the national EPCs. In the absence of EPCs at the time of the DATAMINE project, the data came from previous energy audits in buildings and energy studies in the framework of NOA's consulting activities.

The most relevant source of information and experience for extending the concept of TABULA to the NR building sector is a national project assigned to NOA by the Ministry of Environment (2001-2002) on the: "Investigation of supporting policies for the advancement of the Ministry's policies in relation to the abatement of CO_2 emissions in the residential and tertiary sectors" [7]. In the framework of this project, data on the NR building stock were collected from various sources (NHSS - census

of construction activities 1990-2000 and published literature). The effort resulted in mapping the number and size (floor area) of NR buildings classified according to the building use, date of construction and climate. Similarly, a mapping of the annual operational specific electrical and thermal energy consumption was achieved for the different categories.

Non-residential buildings represent about the 25% of the total number of Hellenic buildings for 1990. A first classification is presented in [17]. Accordingly, the main categories of the Hellenic NR building stock according to their end use are: *offices/commercial* (2.74% of the total number of Hellenic buildings), *schools* (0.41%), *hotels* (0.26%) and *hospitals* (0.05%). Other uses of NR buildings include churches, factories, athletic facilities, storage areas, closed parking spaces etc, which account for 21.9% of the total stock, the majority of which have periodic use and a limited overall contribution to the total energy consumption. Therefore, from the energy consumption point of view the NR building sector would be reasonably represented by the four main categories mentioned above. Table 5.1 summarizes the number and total floor area of buildings per construction year band for each of the four categories.

Table 5.1: Number of buildings and total floor area for the main categories of the Hellenic tertiary sector.

	Offices/Commercial		Schools		Но	otels	Hospitals		
	# bldgs	# bldgs Floor area #		Floor area	# bldgs	Floor area	# bldgs	Floor area	
		(m ²)		(m²)		(m²)		(m ²)	
pre 1980	89,352	34,176,657	14,126	20,966,906	3,015	6,524,219	1,566	3,394,400	
1981-2000	39,348	32,361,389	700	1,164,145	2,580	9,380,098	117	1,004,400	
2001-2010	23,850	25,544,135	750	1,322,299	1,214	5,430,632	59	580,041	

Figure 5.1 illustrates the distribution of NR buildings in the four climatic zones defined in KENAK. Information on the energy-related characteristics of the buildings in the NR sector can be drawn from Table 5.2 giving a distribution of the buildings in different subcategories with common characteristics.

Figure 5.1: Distribution of Hellenic non-residential building stock estimated for the four climatic zones of Greece and the corresponding heating degree-days for each climatic zone. [7,17]

Figure 5.2 presents the estimated average annual specific electric (left) and thermal (right) energy consumption (kWh/m²) for 2001. The thermal energy consumption refers to buildings with central heating systems using fossil fuels (i.e., oil, gas).

Figure 5.2: Distribution of estimated average annual specific electrical (left) and thermal (right) energy consumption in 2001 for the non-residential building stock in the four Hellenic climatic zones. [7,17]

The potential savings as a result of various energy conservation measures (ECMs) on the energy performance of NR buildings are summarized in Table 5.3 [17]. The ECMs per climatic zone are ranked according to the amount of energy savings for the different final uses (heating, cooling, sanitary hot water, lighting). The total annual energy savings are expressed as a percentage of the total thermal & electrical consumption for the different building categories that each ECM was applied to. Some ECMs are financially attractive and would not require the support of any financial instruments, while their total contribution in the reduction of CO_2 emissions is about 77%. These recommended ECMs are identified for the corresponding building category by the (\checkmark) symbol in Table 5.3. The recommended ECMs that need some kind of support are identified for the corresponding building category by the (\ast) symbol.

Energy	Total annual energy savings in NR buildings						Reco	Recommended ECM				
Conservation	Thermal				Electrical							
Measures (ECMs)	O/C	н	S	HC	O/C	н	S	НС	O/C	н	S	нс
		5	Space he	eating – k	ouilding	envelope						
#1: Thermal insulation of external walls	31%	40%	31%	37%	4%	5%		4%	*	✓	*	✓
#2: Thermal insulation of roofs	5%	6%	5%	6%	2%	2%		2%		*		*
#3: Installation of double-glazing	11%	19%	18%	18%								*

Table 5.3: Priorities for the implementation of ECMs in Hellenic NR buildings (O/C: offices/Commercial, H: Hotels, S: Schools, HC: Health Care) [17]

Space heating - heat production

#4: Maintenance of									_		
central heating		11%						*	\checkmark	*	\checkmark
installations											
#5: Replacement of											
inefficient boilers with		170/						1	1	1	1
energy efficient oil-		1770						•	•	•	•
burners											
#6: Replacement of											
inefficient boilers with		210/						1	1		~
energy efficient		2170						•	•		•
natural gas - burners											
#7: Temperature											
balance controls for		5%						*	\checkmark		\checkmark
central space heating											
#8: Space thermostats		5%						\checkmark	\checkmark		\checkmark
			Coo	ling							
#9: External shading				14%	17%	15%	14%	*	*		*
#10: Ceiling fans					60	%		\checkmark	\checkmark	*	\checkmark
#11: Night ventilation				16%				*			
			Sanitary h	not wate	r						
#12: Solar collectors							.				N
for SHW production				43%	76%	33%	64%		未		木
			Ligh	ting							
#13: Energy efficient						0/				./	
lamps					60	%		•	•	•	•
			Total Energy	Manage	ment						
#14: BMS - Building	200/	200/	200/	200/	200/		200/	1	1		1
Management System	20%	20%	20%	30%	30%		30%	•	÷		•

5.2 Draft classification scheme for non-residential buildings

The NR sector presents a large variety of building uses that differ in terms of operation time and indoor environmental requirements, which has a significant effect on their energy demand and consumption. Therefore, a national typology of NR buildings should be based on three parameters, namely:

- *building utilization*, affecting the operational patterns and the indoor air requirements
- *construction year band*, characterizing the architectural features and envelope construction as well as the system installations to some extent
- *climate*, affecting the construction trends and determining the energy demand of the buildings.

Along these lines, a classification of the NR buildings is presented in [17]. According to the building use, four discrete typologies are presented, namely:

- Offices / commercial
- Hotels
- Hospitals
- Schools

Three construction year bands are defined:

- pre 1980 when the national HBTIR came into force
- 1981-2000 when implementation of the TIR was gradually adapted
- 2001-2010 full implementation of HBTIR

Despite the fact that no significant differences should be expected between residential and non-residential buildings regarding the envelope characteristics, the system installations in the tertiary sector buildings present a higher level of complexity, since a wider variety of systems must be considered in order to include cooling, ventilation and air conditioning technologies that play a very significant role in the energy consumption of these buildings.

Among the above mentioned building uses, the simplest is schools, as it includes buildings operating only a few hours a day and nine months a year. The system installations mainly include boilers (oil/ gas) and they seldom incorporate cooling technologies, due to the fact that schools remain closed during the summer period. Therefore, the overall complexity of this typology is similar to the one of residential buildings. Table 5.4 summarizes the frequencies available for the twelve classes (three construction periods x four climatic zones) of the school building typology [17].

Table 5.4: Frequencies (number of complexes, floor area) for the classes of the school building typology [17].

Climatic Zone(*)	Numbe	Number of school complexes			Floor area (m ²)			
	Pre 1980	1981-2000	2002-2010	Pre 1980	1981-2000	2002-2010		
Zone A	2,395	119	127	2,395,303	130,567	152,610		
Zone B	6,381	316	339	10,847,369	600,770	677,560		
Zone C	4,749	235	252	7,123,025	400,038	453,824		
Zone D	601	30	32	601,208	32,771	38,304		
Total	14, 126	700	750	20,966,906	1,164,145	1,322,299		

(*) According to KENAK, four climatic zones are defined on the basis of the number of heating degree days (HDD), namely: A: 601-1100 HDD, B: 1101-1600 HDD, C: 1601-2200 HDD, D: > 2201 HDD

	OFFICE	OFFICES/COMMERCIAL			HOTELS (number of complexes) (r			SCHOOLS (number of complexes)			HEALTH CARE		
Construction period	1	2	3	1	2	3	1	2	3	1	2	3	
Total	89,352	39,348	23,850	3,015	2,580	1,214	14,126	700	750	1,566	117	59	
Without or inadequate wall insulation	89,352			1,543			14,126			282	282	282	
Without or inadequate roof insulation	89,352			1,543			14,126			42	42	42	
With central heating systems	15,539	32,465	23,850	3,015	2,580	1,214	14,126	700	750				
With old central heating systems	10,877	9,740		2,279	750		9,888	210		783	783	783	
No temperature balance control	15,539	22,726		1,453	586		14,126	490		59	59	59	
No space thermostats	10,887	16,233		772	234		9,888	350		29	29	29	
No solar collectors	17,870	7,870	4,770	2,279	1,875	877	2,825	140	150	1,566	1,566	1,566	
No shading	5,361	9,444		547	1,125		848	63					

Table 5.2: Number of non-residential buildings for different subcategories with common characteristics [2]

The estimated number of school complexes and floor areas for each of the 12 building categories and the number of school complexes for each of the subcategories for the three different construction periods were estimated using data from the Organization of School Buildings (OSB) (i.e. number of classrooms, area per classroom, classrooms per school etc), the construction activity during the 1990s and relevant existing studies.

Figure 5.3 illustrates the ECMs described in Table 5.3 ranked for the school building stock according to the amount of energy savings for the different final uses (heating, cooling, sanitary hot water, lighting).

The most effective ECMs for schools are the ones dealing with the reduction of thermal energy for space heating. First is the addition of thermal insulation to reduce heat losses through exposed walls, followed by the replacement of old oil boilers and the frequent maintenance of central heating installations. The installation of energy efficient lamps, due to the high-energy consumption for artificial lighting in schools, is also an effective measure.

Figure 5.3: Ranking of energy conservation measures for the Hellenic school building stock in 2010 [17]

5.3 Proposed proceeding / link with current national activities

As discussed in section 5.2, a non-residential buildings typology should be based on the building end-use rather than on building size. Due to the lack of official data/information that would permit a refined representation of the different uses in a typology, a first classification of the non-residential buildings would result in a typology including a total of 48 types of buildings (4 categories of use X 3 construction periods X 4 climatic zones)

Data to feed the non-residential building typologies can be drawn from the DATAMINE platform that includes, a total of 85 NR buildings, among which, 29 airports, 3 hotels, 5 offices, 4 schools, 10 hospitals, 18 sports halls and 16 swimming pools. Additional information could also be retrieved from the following sources:

- Empirical data for the Hellenic building stock
- Existing and on-going studies
- National standards and regulations providing information on building construction types and heat supply systems
- National statistical data from recent releases of the Hellenic Statistical Service
- National EPC register; this presents an excellent opportunity to get an insight of the energy-related features that differentiate buildings according to use by analyzing the EPC data as they become available.

The TEE-KENAK software should be used as the Hellenic calculation tool for the energy assessment of the buildings as it is in-line with the provisions of the Hellenic Regulation (KENAK) and most recently updated technical guidelines for tertiary sector buildings.

5.4 Conclusions

The TABULA typology concept could be expanded to apply to non-residential buildings. As there is a large variety of building uses and operational characteristics in the tertiary sector, it is necessary to classify buildings according to their use rather than their size. Accordingly, a preliminary classification could include the following four main building end-uses:

- Schools
- Offices
- Hotels
- Hospitals

Additionally, the three construction year bands used in the residential building typology: pre-1980, 1981-2000 and 2001-2010 to reflect the different trends in the envelope construction before and after the HBTIR and an additional period after 2011 for new buildings in compliance with KENAK. Using the four climatic zones A, B, C and D defined in the national regulation - KENAK would result for each typology related to a building use that includes a total of 12 building classes (3 age bands x 4 climatic zones).

As in TABULA residential typology, the above typologies will have to be complemented by two sub-typologies, namely, the "building element" and the "systems" sub-typologies. In the case of NR buildings the "building elements" subtypology would be more or less the same as the one prepared for the residential buildings. However, as cooling, mechanical ventilation and air conditioning are very important factors of energy consumption in the tertiary sector, the "Systems" subtypology would have to be expanded to include the large variety of relevant technologies that are commonly met in the tertiary sector.

6 The Hellenic TABULA Brochures

In order to facilitate the national dissemination efforts of the TABULA results, twopage **brochures** were prepared for each of the 24 buildings of the Hellenic typology. The brochures were prepared in Hellenic.

- The first page includes information on the building at its present state (e.g. a description of the envelope components and their heat transfer coefficients, an overview of the installed systems and their performance coefficients as well as the calculated energy demand, consumption per energy carrier and fuel, CO₂ emissions, primary energy and operational cost).
- The second page summarizes the results of the standard and ambitious scenarios illustrating the energy savings by comparison to the actual state of the building, the respective investment costs and the corresponding SPBPs. Figure 6.1 illustrates the brochure layout and content.

Apart from the two-page brochures, dissemination material was prepared including a short presentation of the TABULA project, the existing European Directive EPBD, the National Legislation on the EPA of buildings and general information on the Hellenic building stock and its energy balance. Practical information is included on energy saving measures and tips with a discussion of the related pros and cons. Relevant information on financing schemes are also included. This material along with the 24 two-page brochures for the buildings of the Hellenic typology is available for public access (www.energycon.org/tabula.html) in the form of an **electronic booklet** (Figure 6.2).

Figure 6.2: Electronic Booklet of the Hellenic Brochure report

Figure 6.1: Layout and content of the Hellenic Brochures

Building index	Building type (SFH – MFH) <i>TABULA code</i>	
ge	Construction year band1:prior to 19802:1981 – 20003:2001 – 2010	Photo of a representative buildir
limatic zone	A B C D Defned in the National Regulation KENAK	(existing building used as an examp
leated floor (m ²)	Total heated floor area (external dimensions)	
leated volume(m ³)	Total volume of heated areas in the building	
Building descri	ntion	

A description of the most prominent characteristics of the building and its surroundings

Construction	details	Thermal charac	cteristic	s (W/r	n² K)		
Walls		Walls / structure					
		Roof			U values		
Structure	Description of the main structural elements of the	Floor					
	building. Materials, energy-	Windows					
Roof	envelope (ie. existence and type of insulation, window and	g- windows (-)		Solar he per	plar heat gain coefficient per window type		
Windows	frame types)	Systems - performance					
Shutters			Неа	ating	DHW		
		Generation					
Floor		Storage	Pe /L	rformance Jigher Cal	e coefficients		
		Distribution	(1)				
Systems - de	scription	Annual Energy	Perform	nance			
Generation		Demand		Total en space al (kWh/m²)	ergy demand for nd DHW heating		
	Type, age, insulation level, maintenance level of space	Thermal energy Electrical energy		per ener (kWh/m²)	gy-end use		
	nealing systems.	Primary energy		kWh/m²			
Distribution		Emissions CO ₂		tn			
Solar collectors	Total surface installed (m ²)	Oil		lt			
	Type, age, insulation level,	Electricity		kWh			
DHM	maintenance level of space heating systems.	Operational cost		€/m² heate	ed floor area		

		ENERGY SA	VING INTERVE	NTIONS	
		Ś	3	up to 10000 €	`
		t cost	86	10000 – 20000 €	/bacŀ PBP)
STANDARD S	SCENARIO	tment	988	20000 – 40000 €	e pay d (SI
		nvest	8888	40000 – 60000 €	impl
				over 60000 €	S T
ENVELOPE	Interventions	on the building	i envelope (descri	ption and new U_values)
SYSTEMS	Interventions coefficients o	on the syster f performance)	ms for space he	ating and DHW (descri	ption and new
RES	Incorporation coverage of I	of RES systen DHW demand)	ns and techniques	s (solar collector area and	d percentage of
Energy source			Operation and c	ost (annual)	
Comparison of e type of the buildi	nergy consum	nption per fuel after the	Cost (€/m²) and s	savings (%)	
application of the	e Standard Sc	enario.	Energy demand		
			Demand (kWh/n	n ² heated floor area) and	savings (%)
			Emissions CO ₂ Emissions (ka/m	r^2 heated floor area) and	reduction (%)
			3	up to 10000 €	×
		t cosi	8 8	10000 – 20000 €	ybac PBP)
AMBITIOUS S	SCENARIO	tmen	888	20000 – 40000 €	e Pa od (S
		Inves	8888	40000 – 60000 €	Simpl
				over 60000 €	0)
ENVELOPE	Interventions	on the building	i envelope (descri	ption and new U_values))
SYSTEMS	Interventions coefficients o	on the syster f performance)	ms for space he	ating and DHW (descri	ption and new
RES	Incorporation coverage of I	of RES systen DHW demand)	ns and techniques	s (solar collector area and	d percentage of
Energy source	Ū	,	Operation and c	ost (annual)	
Comparison of e type of the buildi	nergy consum	nption per fuel after the	Cost (€/m ²) and s	savings (%)	
application of the	e Standard Sc	enario.	Energy demand		
			Demand (kWh/n	n ² heated floor area) and	savings (%)
			Emissions CO ₂		
			Emissions (kg/m	² heated floor area) and	reduction (%)
			Emergy demand Demand (kWh/n Emissions CO ₂ Emissions (kg/n	n ² heated floor area) and 1 ² heated floor area) and	savings (%) reduction (%)

All relevant material is included in the Hellenic TABULA brochure report [18]. It is intended for engineers and energy consultants in order to provide a quick overview of the available national typologies and potential energy savings through the

implementation of effective ECMs. Examples (in English) for an SFH and an MFH building respectively are included in Appendix III.

7 eKIA: A web application based on the Hellenic typology concept

In an effort to facilitate dissemination of the typology concept in Greece, NOA has prepared eKIA, a web application in Hellenic. addressed mainly to home owners who wish to have a first assessment of the energy performance of а building and its potential for improvement through energy efficient measures. Exploiting the Hellenic TABULA typology, users may browse through the 24 building types to choose

the one that better approximates the building under assessment (Figure 7.1). There is a possibility to choose among four different climatic zones (A, B, C, D) and the three construction periods (pre-1980, 1981-2000, 2001-2010). Typical U-values [18] and coefficients of performance for buildings of the same class in terms of size, climatic zone and time band are automatically attributed to the envelope elements and installed systems for space and DHW heating. Heat pump is the only type assumed for cooling.

Figure 7.1: eKIA - Definition of a building using the Hellenic typology. Overview of available example buildings.

Adaptation of the initially selected building from the available 24 Hellenic typologies would be necessary for a more realistic representation of the actual building. This is possible by defining basic parameters such as the actual heated floor area and building volume, the total window area as well as the number of floors (Figure 7.2). Further refinement is possible by providing some basic information related to the:

• actual envelope construction (e.g. the use of thermal insulation for walls/roof/floor, the use of double glazing, and the use of shading)

- heating system (e.g. type, installation year and controls, maintenance level)
- cooling system (e.g. installation year, possible use of ceiling fans)
- solar collectors (e.g. use for DHW and/or space heating, collector area) and
- PVs (area)

Figure 7.2: eKIA – Building input data : existing condition and energy conservation scenarios.

Calculations are performed using the official national tool (TEE-KENAK) with the corresponding inputs defined by the user. The goal was to significantly simplify the necessary input data in order to perform a first assessment of the buildings energy performance. Results include a preliminary benchmark for the investigated building at its present state, along with estimations for its primary energy consumption, site energy consumption breakdown (total, heating, cooling, DHW) and CO₂ emissions.

Furthermore, eKIA provides a means for a fast preliminary assessment of energy conservation scenarios. These include envelope and system interventions as foreseen by the new national regulation (KENAK), as well as the incorporation of RES and other technologies for space and DHW heating. Scenario results are presented in comparison with the existing condition (Figure 7.3). Three additional outputs are provided for each scenario, namely, the resulting energy savings, the investment cost (costs reflect the prices of year 2010) and the simple payback period.

This procedure, takes advantage of the Hellenic basic typology but also of the two additional sub-typologies, reducing the need for complex and time consuming data entry of all the detailed inputs required by TEE-KENAK. This simplified tool would be most appropriate in order to promote the TABULA approach and deliverables and facilitate users for a quick first assessment of the energy performance of a residential building and potential ECMs.

The software has been available for public use since November 2012 at: <u>http://174.36.160.183/ekia.html</u>

Figure 7.3: eKIA – Results (existing condition and scenarios).

REFERENCES

1. C.A. Balaras, A.G. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis and D.P. Lalas, European Residential Buildings and Empirical Assessment of the Hellenic Building Stock, Energy Consumption, Emissions & Potential Energy Savings. Building and Environment 42, (2007) 1298.

2. E. Dascalaki, P. Droutsa, A. Gaglia, S. Kontoyiannidis and C.A. Balaras, Data collection and analysis of the building stock and its energy performance – An example for Hellenic buildings, Energy & Buildings 42 (2010) 1231.

3. EN ISO 13790. 2008. Energy performance of buildings - Calculation of energy use for space heating and cooling. European Committee for Standardization, Brussels.

4. EN 15316-3-1: Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies - Part 3-1: Domestic hot water systems, characterization of needs (tapping requirements)

5. EN 15316-3-2: Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies - Part 3-2: Domestic hot water systems, distribution

6. EN 15316-3-3: Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies - Part 3-3: Domestic hot water systems, generation

7. D. Lalas, C.A. Balaras, A. Gaglia, E. Georgakopoulou, S. Mirasgentis, I. Serafidis, S. Psomas, "Evaluation of supporting policies for the advancement of the Ministry's policies in relation to the abatement of CO_2 emissions in the residential and tertiary sectors", 650 p., Institute for Environmental Research & Sustainable Development, National Observatory of Athens, and Ministry for the Environment, Physical Planning and Public Works, Directorate Urban Planning & Housing, November 2002 [in Hellenic].

8. NHSS. Research—energy consumption in households 1987–1988, Athens: National Hellenic Statistical Service; 1993 [in Hellenic].

9. NHSS. Results from the census of constructions—buildings of the December 1, 1990. Athens: National Hellenic Statistical Service; 2000 [in Hellenic].

10. NHSS. Results from the census of constructions—buildings of the December 1, 2000. Athens: National Hellenic Statistical Service; 2010 [in Hellenic].

11. NHSS. Statistics of building construction activity for the years 1995 and 1997. Athens: National Hellenic Statistical Service; 2000 [in Hellenic].

12. On line publication of the Hellenic Ministry of Environment and Climatic Change (<u>http://195.251.42.2/cgi-bin/nisehist.sh?objtype=stats_query</u>)

13. EU energy and transport by figures. Statistical pocket book

14. Balaras CA, Droutsa K, Argiriou AA, Wittchen K. Assessment of energy and natural resources conservation in office buildings using TOBUS. Energy and Buildings 2002;34(2):135–53.

15. Dascalaki E., C.A. Balaras, XENIOS – A Methodology for Assessing Refurbishment Scenarios and the Potential of Application of RES and RUE in Hotels, Energy & Buildings, 36, 1091-1105, (2004).

16. Lahrech R.(Editor). Overall report on pilot projects, Final Report, Report Number: EPA-NR CSTB 8, Energy Performance Assessment for Existing Non Residential Buildings, European Commission, Intelligent Energy – Europe, EIE/04/125/S07.38651, June 2007. www.epa-nr.org

17. A.G. Gaglia, C.A. Balaras, S. Mirasgedis, E. Georgopoulou, Y. Sarafidis, D. P. Lalas, Empirical Assessment of the Hellenic Non-Residential Building Stock, Energy Consumption, Emissions and Potential energy Savings, Energy Conversion and Management, Vol. 48, No.4 p.1160-1175, 2007.

18. E. Dascalaki et al., Hellenic Typology Brochure, 88 p., WP3 National Building Typologies, D5.2 National Typology Brochures, TABULA project, May 2011.

Appendix I: Statistical tables (Frequencies)

Statistical		Availability	Data
Table	Item		Source
	Frequency of building types of the national building		[1]
S-1.1	stock		
S-1.2.1	Percentage of thermally refurbished envelope areas		
S-1.2.2	Information on insulation level and window types	×	[2]
S-2.1	Centralisation of the heat supply (for space heating)	×	[2], [3]
	Heat distribution and storage of space heating		
S-2.2	systems		
		×	[1], [2],
S-2.3	Heat generation of space heating systems		[4]
	Heat distribution and storage of domestic hot water		
S-2.4	systems		
S-2.5	Heat generation of domestic hot water systems	✓	[4]
S-2.6	Solar thermal systems	×	[2]
S-2.7	Ventilation systems		
S-2.8	Air-conditioning systems	✓	[2]
S-2.9	Control of central heating systems	×	[2]
	Correlation of envelope and heat supply		
S-2.10	modernisations		

Data sources

[1] Hellenic Statistical Authority (HSA), Census 2001.

[2] D. Lalas, C.A. Balaras, A. Gaglia, E. Georgakopoulou, S. Mirasgentis, I. Serafidis, S. Psomas, Evaluation of supporting policies for the advancement of the Ministry's policies in relation to the abatement of CO_2 emissions in the residential and tertiary sectors, 650 p. *in Hellenic*, IERSD, National Observatory of Athens, Ministry for the Environment, Physical Planning and Public Works, Directorate Urban Planning & Housing, November (2002).

[3] HSA, Research—energy consumption in households 1987–1988, Athens(1993) [in Hellenic].

[4] National Advisory Group (NAG) Unpublished data – empirical data on the Hellenic building stock

Statistic S-1.1: Frequency of building types of the national building stock

National: living space external dimensions (reported by the National Statistical Service) Conditioned area – SFH: National x 0.70 Conditioned area – MFH: National x 0.80 TABULA ref: conditioned area based on internal dimensions SFH: National x 0.70 x 0.85 MFH: National x 0.80 x 0.85

CLIMATIC		SFH		MFH			
ZONE	# bldgo	Floor area in 1000 m ²		# bldgo	Floor area	in 1000 m ²	
A	# blugs	National	TABULA ref	# blags	National	TABULA ref	
pre-1980	256,126	24,010.738	14,286.389	14,815	2,987.390	2,031.425	
1980 – 2000	101,543	16,535.476	9,838.608	10,851	6,309.271	4,290.304	
2000 -	76,012	13,226.145	7,869.556	55,629	6,119.221	4,161.070	
TOTAL	433,681	53,772.359	31,994.553	81,295	15,415.882	10,482.800	

CLIMATIC		SFH		MFH		
ZONE	Holdra Floor area ir		in 1000 m ²	# bldgg	Floor area in 1000 m ²	
В	# blugs	National	TABULA ref	# blugs	National	TABULA ref
pre-1980	589,178	59,222.241	35,237.233	134,423	52,591.634	35,762.311
1980 – 2000	187,005	30,665.932	18,246.229	51,239	38,614.093	26,257.583
2000 -	99,873	18,726.225	11,142.104	44,862	35,037.293	23,825.359
TOTAL	876,056	108,614.398	64,625.567	230,524	126,243.020	85,845.254

CLIMATIC		SFH		MFH			
ZONE	# bldgg	Floor area in 1000 m ²		# bldgo	Floor area in 1000 m ²		
C	# blugs	National	TABULA ref	# blugs	National	TABULA ref	
pre-1980	471,650	45,250.489	45,250.489 26,924.041		18,500.091	12,580.062	
1980 – 2000	141,938	23,051.218	13,715.475	27,375	19,554.006	13,296.724	
2000 -	88,118	16,257.744 9,673.358		25,080	18,483.636	12,568.873	
TOTAL	701,706	84,559.451	50,312.873	95,373	56,537.733	38,445.658	

CLIMATIC		SFH		MFH		
ZONE Floor area		Floor area	in 1000 m ²	# bldgo	Floor area in 1000 m ²	
D	# blogs Nationa		TABULA ref		National ^(*)	TABULA ref
pre-1980	54,688	5,193.004	3,089.837	2,511	527.809	358.910
1980 – 2000	20,237	3,184.299	3,184.299 1,894.658		1,248.487	848.971
2000 -	14,348	2,475.032 1,472.644		1,764	1,145.100	778.668
TOTAL	89,273	10,852.335	6,457.139	6,253	2,921.396	1,986.549

NOTE: Officially reported floor areas (tabulated under "National") refer to total (gross) floor areas measured using external dimensions. These include non-heated areas (basements, corridors, stairwells etc.). In order to convert this information to the TABULA reference areas it was necessary to make an assumption of the average percentage of the total area that corresponds to the heated floor area in SFH and MFH buildings. In collaboration with the NAG the percentages 70% and 80% were adopted for SFH and MFH buildings respectively.

Statistic S-1.2.2: Information on insulation level and window types

(no common template)

Climatic zone	Climatic	Climatic	Climatic	Total			
А	zone B	zone C	zone D				
	SFI	Н					
256,126	589,178	471,650	54,688	1,371,642			
10,595	25,262	17,659	2,353	55,869			
0	0	0	0	0			
	MF	Н					
14,815	134,423	42,918	2,511	194,667			
1,097	5,236	2,707	196	9,236			
0	0	0	0	0			
	Climatic zone A 256,126 10,595 0 14,815 1,097 0	Climatic zone Climatic A Zone B 256,126 589,178 10,595 25,262 0 0 14,815 134,423 1,097 5,236 0 0	Climatic zone Climatic zone B Climatic zone C A Zone B Zone C 256,126 589,178 471,650 10,595 25,262 17,659 0 0 0 MFH 14,815 134,423 42,918 1,097 5,236 2,707 0 0 0	Climatic zone A Climatic zone B Climatic zone C Climatic zone D 256,126 589,178 471,650 54,688 10,595 25,262 17,659 2,353 0 0 0 0 MFH 14,815 134,423 42,918 2,511 1,097 5,236 2,707 196 0 0 0 0 0			

S-1.2.2.1: Number of buildings with non-insulated walls [2]

S-1.2.2.1a: Percentage of buildings with non-insulated walls [2]

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	А	zone B	zone C	zone D	
		SFI	н		
pre-1980	100%	100%	100%	100%	100%
1980 – 2000	10.4%	13.5%	12.4%	11.6%	12.4%
2000	0	0	0	0	0
		MF	H		
pre-1980	100%	100%	100%	100%	100%
1980 – 2000	10.1%	10.2%	9.9%	9.9%	10.1%
2000	0	0	0	0	0

S-1.2.2.2: Number of buildings with non-insulated roofs [2]

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	А	zone B	zone C	zone D	
		SF	Н		
pre-1980	179,288	412,425	330,155	38,281	960,149
1980 – 2000	0	0	0	0	0
2000	0	0	0	0	0
		MF	Н		
pre-1980	10,370	94,096	30,042	1,758	136,267
1980 – 2000	0	0	0	0	0
2000	0	0	0	0	0

S-1.2.2.2a: Percentage of buildings with non-insulated roofs [2]

•								
Building classes	Climatic zone	Climatic	Climatic	Climatic	Total			
	A	zone B	zone C	zone D				
		SF	Н					
pre-1980	69.9%	70.0%	70.0%	69.9%	69.9%			
1980 – 2000	0	0	0	0	0			
2000	0	0	0	0	0			
		MF	Н					
pre-1980	69.9%	69.9%	69.9%	70.0%	70.0%			
1980 – 2000	0	0	0	0	0			
2000	0	0	0	0	0			

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	A	zone B	zone C	zone D	
		SF	н		
pre-1980	0	0	0	0	0
1980 – 2000	3,532	8,421	5,886	784	18,623
2000	0	0	0	0	0
		MF	Н		
pre-1980	0	0	0	0	0
1980 – 2000	366	1,745	902	65	3,079
2000	0	0	0	0	0

S-1.2.2.2: Number of buildings with partly insulated walls [2]

S-1.2.2.2a: Percentage of buildings with partly insulated walls [2]

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	А	zone B	zone C	zone D	
		SF	Н		
pre-1980	0	0	0	0	0
1980 – 2000	3.4%	4.5%	4.1%	3.8%	4.1%
2000	0	0	0	0	0
		MF	Н		
pre-1980	0	0	0	0	0
1980 – 2000	3.3%	3.4%	3.3%	3.3%	3.4%
2000	0	0	0	0	0

S-1.2.2.3: Number of buildings with partly insulated roofs [2]

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	А	zone B	zone C	zone D	
		SFI	Н		
pre-1980	17,929	41,242	33,015	3,828	96,015
1980 – 2000	3,532	8,421	5,886	784	18,623
2000	0	0	0	0	0
		MF	H		
pre-1980	1,037	9,410	3,004	176	13,627
1980 – 2000	366	1,745	902	65	3,079
2000	0	0	0	0	0

S-1.2.2.3a: Percentage of buildings with partly insulated roofs [2]

Building classes	Climatic zone	Climatic	Climatic	Climatic	Total
	A	zone B	zone C	zone D	
		SF	н		
pre-1980	7.0%	6.9%	6.9%	6.9%	7.0%
1980 – 2000	3.5%	4.5%	4.1%	3.8%	4.1%
2000	0	0	0	0	0
		MF	Н		
pre-1980	6.9%	7.0%	6.9%	7.0%	7.0%
1980 – 2000	3.3%	3.4%	3.3%	3.3%	3.4%
2000	0	0	0	0	0

Statistic S-2.1: Centralization of the heat supply (for space heating)

Climatic zone A		SFH			MFH			
	pre- 1980	1980- 2000	2000- 2010	pre- 1980	1980- 2000	2000- 2010		
Room heating	84 %	14 %		90 %	14 %			
systems								
Central heating	16 %	86 %	100 %	10 %	86 %	100 %		
systems								
District heating								
	100 %	100 %	100 %	100 %	100 %	100 %		
Climatic zone B					_			
Room heating systems	9 %			51 %				
Central heating	81 %	100 %	100 %	49 %	100 %	100 %		
systems								
District heating								
	100 %	100 %	100 %	100 %	100 %	100 %		
Climatic zone C								
Room heating	57 %			36 %				
systems								
Central heating	43 %	100 %	100 %	64 %	100 %	100 %		
systems								
District heating								
	100 %	100 %	100 %	100 %	100 %	100 %		
Climatic zone D								
Room heating	62 %	10%		21 %	10%			
systems								
Central heating	38%	90 %	95 %	79 %	90 %	100 %		
systems								
District heating			5 %			5 %		
	100 %	100 %	100 %	100 %	100 %	100 %		

Percentages related to <u>number of buildings</u> per age band / climatic zone / type [2]

Statistic S-2.3: Heat generation (for space heating)

Percentages related to <u>number of buildings</u> with central heating systems [2]

		SFH			MFH	
	pre- 1980	1980- 2000	2000- 2010	pre- 1980	1980- 2000	2000- 2010
Old boilers	70 %	10 %	0	70 %	10 %	0
New boilers	30 %	90 %	100 %	30%	90 %	100 %
	100 %	100 %	100 %	100 %	100 %	100 %

Alternatively:

Percentages related to <u>number of buildings</u> per age band / energy carrier / type. ([4], used in the National Balance calculations)

		SFH			MFH	
	pre- 1980	1980- 2000	2000- 2010	pre- 1980	1980- 2000	2000- 2010
New Oil boiler	40 %	41 %	40 %	41 %	45 %	44 %
Old Oil Boiler	34 %	30 %	19 %	44 %	37 %	31 %
New Natural gas boiler		2 %	5 %	2 %	3 %	6 %
Old Natural gas boiler		1 %	4 %		1 %	2 %
Stoves_gas/oil fuel	7 %	10 %	15 %	4 %	7 %	11 %
Open fire	5 %	4 %	2 %			
Heat pumps	1 %	7 %	12 %	1 %	3 %	5 %
Electrical space heaters	13 %	5 %	3 %	8 %	4 %	1 %
	100 %	100 %	100 %	100 %	100 %	100 %

Statistic S-2.5: Heat generation (DHW)

Percentages related to <u>number of buildings</u> per age band / energy carrier / type. Main heat generation systems (solar systems are considered in S-2.6)[4]

		SFH		MFH							
	pre- 1980	1980- 2000	2000- 2010	pre- 1980	1980- 2000	2000- 2010					
Oil boiler, well maintained	1 %	3 %	4 %	1 %	3 %	4 %					
Oil Boiler, poorly maintained / poorly insulated	3 %	2 %	2 %	1 %	1 %	4 %					
Oil boiler, well maintained+electric immersion resistance	5 %	11 %	18 %	1 %	4 %	8 %					
Oil boiler, poorly maintained+electric immersion resistance	4 %	8 %	9 %	1 %	3 %	6 %					
Instantaneous water heaters	6 %	10 %	7 %	7 %	7 %	6 %					
Electric water heaters	81 %	66 %	60 %	89 %	82 %	72 %					
	100 %	100 %	100 %	100 %	100 %	100 %					

Statistic S-2.6: Solar thermal systems

Percentages related to dwellings in SFH / MFH buildings [2]

		SFH / MFH											
	pre- 1980	1980- 2000	2000- 2010										
No solar thermal systems	80%	64%	50%										
Solar system for hot water	20%	36%	50%										
	100 %	100 %	100 %										

Statistic S-2.8: Air conditioning systems

	SFH / MFH												
Climatic Zones	А	В	С	D									
Split units	50 %	55 %	40 %	20 %									
No local cooling systems	50 %	45 %	60 %	80 %									
	100 %	100 %	100 %	100 %									

S-2.8a: Percentage related to <u>dwellings</u> in SFH and MFH buildings [2]

Alternatively:

S-2.8b: Number of dwellings per age band / climatic zone / type [2]

		SFH			MFH	
	pre-	1980-	2000-	pre-	1980-	2000-
	1980	2000	2010	1980	2000	2010
Climatic zone A						
Split units	139,695	59,377	44,087	22,980	30,495	27,815
No local cooling	142,784	59,378	44,087	22,980	30,495	27,814
systems						
Climatic zone B						
Split units	375,619	123,167	68,663	445,006	207,275	175,186
No local cooling	321,113	100,772	56,179	364,096	169,589	143,335
systems						
Climatic zone C						
Split units	209,947	66,702	43,354	113,847	75,895	67,213
No local cooling	322,412	100,053	65,031	170,770	113,844	100,820
systems						
Climatic zone D						
Split units	12,089	4,595	3,300	1,624	2,433	2,082
No local cooling	49,005	18,378	13,200	6,496	9,734	8,328
systems						

Statistic S-2.9: Control of central heating systems

S-2.9a: Percentages related to number of buildings with central heating per age band. [2]

	SFH / MFH											
	pre-1980	1980-2000	2000-2010									
Outdoor temperature compensation for ON/OFF	30 %	70 %	100 %									
control of boiler												
Indoor air temperature controller	10 %	80 %	100 %									

Alternatively:

S-2.9b: Percentages related to number of buildings per age band / climatic zone / type [2]

		SFH			MFH	
	pre- 1980	1980-2000	2000-2010	pre- 1980	1980-2000	2000- 2010
Climatic zone A						
Outdoor temperature compensation	5 %	60 %	100 %	3 %	60 %	100 %

for ON/OFF control of boiler						
Indoor air temperature controller	2 %	69 %	100 %	1 %	69 %	100 %
Climatic zone B						
Outdoor temperature compensation for ON/OFF control of boiler	24 %	70 %	100 %	15 %	70 %	100 %
Indoor air temperature controller	8 %	80 %	100 %	5 %	80 %	100 %
Climatic zone C						
Outdoor temperature compensation for ON/OFF control of boiler	13 %	70 %	100 %	19 %	70 %	100 %
Indoor air temperature controller	4 %	80 %	100 %	6	80 %	100 %
Climatic zone D						
Outdoor temperature compensation for ON/OFF control of boiler	11 %	63 %	95 %	24 %	63 %	100 %
Indoor air temperature controller	4 %	72 %	95 %	8 %	72 %	100 %

Appendix II: Weighting factors

(energy balance model)

CLIMATIC ZONE : A

(NI: non-insulated bldgs

PI: partly insulated bldgs

I: insulated^{*} bldgs)

	SINGLE FAMILY HOUSES MULTI FAMILY HOUSES																	
(%) of bldgs in the specified time band	prie	or to 19	980	19	81 – 20	000	20	01 - 20	10	pri	or to 1	980	19	81 – 20	000	20	01 - 20	10
	NI	PI	I	NI	Ы	I	NI	PI	I	NI	PI	I	NI	Ы	I	NI	PI	I
	82	15	3	30	50	20	10	20	70	95	5	0	20	70	10	5	20	75
Walls																		
Brickwork	50	30	0	20	25	0	10	5	0	40	5	0	20	10	0	10	5	0
Double brickwork	20	70	100	70	70	100	10	90	95	60	95	0	80	90	100	90	95	100
Stone walls	30	0	0	10	5	0	80	5	5	0	0	0	0	0	0	0	0	0
Roofs																		
Conventional flat roof		38			35			30			98			98			98	
Flat roof under not insulated pitched roof		35			40			45		2			2			2		
Tilted reinforced concrete slab with ceramic tiles		2		5		5		0			0		0					
Wooden beams with ceramic tiles		25			20		20			0			0			0		
Floors																		
Pilotis		2			5			3		5			45			40		
Slab on grade		88			60			17			30			15			10	
Slab over non-heated space		10			35			80			65			40			60	
Windows																		
Single glazed – wooden frame		50			10			2			60			10			2	
Single glazed – metal frame (aluminum)		25		30			3			34			35			10		
Double glazed – wooden frame		3		3		10		1		5			5					
Double glazed – metal frame (aluminum)		20		55		80		5		48		81						
Double glazed – synthetic frame - PVC		2			2			5			0			2			2	

CLIMATIC ZONE : B

PI: partly insulated bldgs

I: insulated^{*} bldgs)

			SIN	IGLE F	AMILY	HOUS	ES		MULTI FAMILY HOUSES									
	pri	or to 19	980	19	81 – 20	000	20	01 - 20	10	prie	or to 1	980	19	81 – 20	000	20	01 - 20	10
(%) of bldgs in the specified time band	NI	Ы	I	NI	PI	I	NI	Ы	I	NI	PI	I	NI	Ы	I	NI	PI	I
	70	25	5	10	60	30	5	10	85	90	9	1	20	60	20	1	20	79
Walls																		
Brickwork	30	30	0	10	10	0	10	5	0	30	10	0	20	10	0	10	5	0
Double brickwork	50	60	100	80	90	100	10	90	95	70	90	100	80	90	100	90	95	100
Stone walls	20	10	0	10	0	0	80	5	5	0	0	0	0	0	0	0	0	0
Roofs																		
Conventional flat roof	60				60			50			98			98			98	
Flat roof under not insulated pitched roof		10			20		25		2				2			2		
Tilted reinforced concrete slab with ceramic tiles		5		15			22		0				0		0			
Wooden beams with ceramic tiles		25			5		3			0			0			0		
Floors																		
Pilotis		2			2			0		5			60			70		
Slab on grade		78			60			20			10			5			2	
Slab over non-heated space		20			38			80			85			35			28	
Windows																		
Single glazed – wooden frame		45			10			0			55			5			2	
Single glazed – metal frame (aluminum)		20		20			5			30			25			10		
Double glazed – wooden frame		5		10		15		5		5			5					
Double glazed – metal frame (aluminum)		25		55		70		10		53				81				
Double glazed – synthetic frame - PVC		5			5			10		0		2			2			

CLIMATIC ZONE : C

I: insulated^{*} bldgs)

			SIN	IGLE F	AMILY	HOUS	ES		MULTI FAMILY HOUSES									
	pri	or to 19	980	19	81 – 20	000	20	01 - 20	10	prie	or to 1	980	19	81 – 20	000	20	01 - 20	10
(%) of bldgs in the specified time band	NI	PI	I	NI	PI	I	NI	Ы	I	NI	PI	I	NI	Ы	I	NI	PI	I
	70	25	5	10	60	30	5	10	85	90	9	1	20	60	20	1	20	79
Walls																		
Brickwork	30	30	0	10	10	0	10	5	0	30	10	0	20	10	0	10	5	0
Double brickwork	50	60	100	80	90	100	10	90	95	70	90	100	80	90	100	90	95	100
Stone walls	20	10	0	10	0	0	80	5	5	0	0	0	0	0	0	0	0	0
Roofs																		
Conventional flat roof	60				60			50			98			98			98	
Flat roof under not insulated pitched roof		10			20		25		2				2			2		
Tilted reinforced concrete slab with ceramic tiles		5			15			22		0			0		0			
Wooden beams with ceramic tiles		25			5		3			0			0			0		
Floors																		
Pilotis		2			2			0		5			60			70		
Slab on grade		78			60			20			10			5			2	
Slab over non-heated space		20			38			80			85			35			28	
Windows																		
Single glazed – wooden frame		45			10			0			55			5			2	
Single glazed – metal frame (aluminum)		20		20			5			30			25			10		
Double glazed – wooden frame		5		10		15		5		5			5					
Double glazed – metal frame (aluminum)		25		55		70		10		53				81				
Double glazed – synthetic frame - PVC		5			5			10			0			2			2	

CLIMATIC ZONE : D

I: insulated^{*} bldgs)

(%) of bldgs in the specified time band		SINGLE FAMILY HOUSES								MULTI FAMILY HOUSES								
		prior to 1980			1981 – 2000			2001 - 2010			prior to 1980			1981 – 2000			2001 - 2010	
		PI	I	NI	PI	I	NI	PI	I	NI	PI	I	NI	PI	I	NI	PI	I
		20	5	10	65	25	5	10	85	85	14	1	15	65	20	1	20	79
Walls																		
Brickwork	30	20	0	10	5	0	10	10	0	40	10	0	30	10	0	10	5	0
Double brickwork	10	30	100	60	75	95	10	70	90	60	90	100	70	90	100	90	95	100
Stone walls	60	50	0	30	20	5	80	20	10	0	0	0	0	0	0	0	0	0
Roofs																		
Conventional flat roof	28		20		20		95		85		75							
Flat roof under not insulated pitched roof	25		50		60		5		13		23							
Tilted reinforced concrete slab with ceramic tiles	2		15		10		0		2		2							
Wooden beams with ceramic tiles	45		15		10		0		0		0							
Floors																		
Pilotis	1		2		2		2		55		60							
Slab on grade	90		50			18		28		10		5						
Slab over non-heated space	9		48			80		70		35		35						
Windows																		
Single glazed – wooden frame	55		5		0		60		5		2							
Single glazed – metal frame (aluminum)	15		15		5		25		20		10							
Double glazed – wooden frame	10		15		20		5		10		10							
Double glazed – metal frame (aluminum)	azed – metal frame (aluminum) 18			60			70		10		63		76					
Double glazed – synthetic frame - PVC	plazed – synthetic frame - PVC 2			5			5		0		2		2					

Appendix III: Sample Brochures

5	Single (GR-ZC	Famil NEB-SI	y Hou ⁼H-02)	Se	
Age class	1	2	2	3	
Climatic zone	A	В	С	D	
Heated area (m2)	380				
Volume (m3)	1100				
Description	·				

Free standing single family house, with four exposed facades. Some free surrounding space. The long axis of the building is oriented SW-NE.

Construction		Thermal transn	nittance (W/m	² K)					
Walls	Insulated (3cm), brick with	Wall	0.91	/ 3.4					
	concrete rendering	Roof	1.0	1.05					
Load bearing	Not insulated	Floor	.7						
		Windows	4	4.1					
Roof	Insulated (3cm), tilted, concrete covered with ceramic tiles.	g-windows (-)	0.:	0.51					
Windows	Double glazed with aluminium frames.	Expenditure coefficients							
Shutters	External aluminium shutters		SH	DHW					
		Generation	1.25	1.25					
Floor	Non insulated, in contact with the	Storage		1.05					
	ground	Distribution	1.06	1.19					
Systems		Annual Energy	Performance						
Generation	Central oil boiler, well thermally	Demand	50.9 kWh/m ²						
	insulated, well maintained, with	Thermal energy	77.3 kWh/m ²	77.3 kWh/m ²					
	compensation.	Electricity	0.1 kWh/m ²						
Distribution	Double pipe, insulated	Primary energy	85.7 kWh/m ²						
		CO ₂ emissions	7.8 tn						
Solar system	-	Fuel (oil)	2899 It						
	Central boiler. Additional electric	Electrical	38 kWh						
DHW	resistance in the hot storage tank (stand-by)	Operational cost	8.2 €/m²						

17	Multi F (GR-ZO)	amily NEB-M	Hou FH-02	Se)
Age class	1	2	I	3
Climatic zone	A	B	С	D
Heated area (m2)	1356			
Volume (m3)	4610			

Free standing building, with four exposed facades (4 floors). A total of 12 apartments. The long axis of the building is oriented SW-NE. Sub-urban area.

Constructio	n	Thermal transn	nittance (W/m	² K)	
	Not insulated Brick with concrete	Wall	2.2 / 3.4		
Walls	rendering.	Roof	3.1		
Load bearing	Not insulated	Floor	2.75		
		Windows	6.	6.1	
Roof	Not insulated, flat. Concrete.	g-windows (-)	0.9	0.58	
Windows	Single glazed with metal frames	Expenditure coefficients			
o	Evitave al plantia abuttare		SH	DHW	
Shutters	External plastic shutters	Generation	1.25	1.00	
		Storage		1.00	
Floor	Not insulated, pilotis.	Distribution	1.14	1.02	
Systems		Annual Energy Performance			
Generation		Demand	92.6 kWh/m ²		
	Central oil boiler, well thermally	Thermal energy	137.6 kWh/m ²		
	insulated, well maintained.	Electricity	6.7 kWh/m ²		
		Primary energy	171.6 kWh/m ²		
Distribution	Single pipe, well insulated.	CO ₂ emissions	58.2 tn	58.2 tn	
Solar system	21 m ²	Fuel (oil)	184151lt	184151lt	
		Electrical	9085 kWh	9085 kWh	
DHW	Electric heaters	Operational cost	15.6 €/m²	15.6 €/m²	

